Fiber-optic gyroscopes based on photonic-crystal fibers

Authors

  • Haider Ali Muse Kharkiv national university of radio electronics ave. Lenina 14, Kharkov, 61000, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2015.37799

Keywords:

fiber optical gyroscope, photonic crystal fiber, Sagnac effect

Abstract

Over the last few decades optical fibers have been widely deployed in navigation industries owing to their special performance as the best light guidance. Fiber-optic gyroscope is one of the applications of optical fibers dependent mainly on the Sagnac effect. It is of important applications in the field of space navigation. In the Fiber-optic gyroscope, an optical fiber is used as the medium of propagation for the light. A long fiber cable is winded into loops in order to increase the effective area of the system. Two beams are again propagating through the fiber in opposite directions. Due to the Sagnac effect, the beam travelling against the rotation experiences a slightly shorter path delay than the other beam. The resulting differential phase shift is measured through interferometry, thus translating one component of the angular velocity into a shift of the interference pattern which is measured photometrically.

Author Biography

Haider Ali Muse, Kharkiv national university of radio electronics ave. Lenina 14, Kharkov, 61000

Postgraduate student

Faculty of electronic engineering

Department of Physical Foundations of Electronic Engineering

References

  1. Overview of Fiber Optic Sensors. Available at: http://www.bluerr.com/images/ Overview_of_FOS2.pdf (Last accessed: 8.02.2012).
  2. Knight, J. C., Birks, T. A., Russell, P. S. J., Atkin, D. M. (1996). All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 21 (19), 1547–1549. doi: 10.1364/ol.21.001547
  3. Chau, Y.-F., Liu, C.-Y., Yeh, H.-H., Tsai, D. P. (2010). A comparative study of high birefringence and low confinement loss photonic crystal fiber employing elliptical air holes in fiber cladding with tetragonal lattice. Progress In Electromagnetics Research B, 22, 39–52. doi: 10.2528/pierb10042405
  4. Ortigosa-Blanch, A., Knight, J. C., Wadsworth, W. J., Arriaga, J., Mangan, B. J., Birks, T. A., Russell, P. S. J. (2000). Highly birefringent photonic crystal fibers. Optics Letters, 25(18), 1325–1327. doi: 10.1364/ol.25.001325
  5. Chen, D., Shen, L. (2007). Ultrahigh Birefringent Photonic Crystal Fiber With Ultralow Confinement Loss. IEEE Photonics Technology Letters, 19 (4), 185–187. doi: 10.1109/lpt.2006.890040
  6. Agrawal, A., Kejalakshmy, N., Chen, J., Rahman, B. M., Grattan, K. T. (2008). Golden spiral photonic crystal fiber: polarization and dispersion properties. Optics Letters, 33 (22), 2716–2718. doi: 10.1364/ol.33.002716
  7. Yang, S., Zhang, Y., Peng, X., Lu, Y., Xie, S., Li, J., Chen, W., Jiang, Z., Peng, J., Li, H. (2006). Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field. Optics Express, 14 (7), 3015–3023. doi: 10.1364/oe.14.003015
  8. Ju, J., Jin, W., Demokan, M. S. (2001). Design of single-polarization single mode photonics crystal fibers. J. Lightwave Technol., 24, 825–830.
  9. Kubota, H., Kawanishi, S., Koyanagi, S., Tanaka, M., Yamaguchi, S. (2004). Absolutely Single Polarization Photonic Crystal Fiber. IEEE Photonics Technology Letters, 16 (1), 182–184. doi: 10.1109/lpt.2003.819415
  10. Knight, J. C., Skryabin, D. V. (2007). Nonlinear waveguide optics and photonic crystal fibers. Optics Express, 15 (23), 15365–15376. doi: 10.1364/oe.15.015365
  11. Mortensen, N. A., Nielsen, M. D., Folkenberg, J. R., Petersson, A., Simonsen, H. R. (2003). Improved large-mode-area endlessly single-mode photonic crystal fibers. Optics Letters, 28 (6), 393–395. doi: 10.1364/ol.28.000393
  12. Folkenberg, J. R., Nielsen, M. D., Mortensen, N. A., Jakobsen, C., Simonsen, H. R. (2004). Polarization maintaining large mode area photonic crystal fiber. Optics Express, 12 (5), 956–960. doi: 10.1364/opex.12.000956
  13. Dobb, H., Kalli, K., Webb, D. J. (2004). Temperature-insensitive long period grating sensors in photonic crystal fibre. Electronics Letters, 40 (11), 657–658. doi: 10.1049/el:20040433
  14. Dong, X., Tam, H. Y., Shum, P. (2007). Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer. Applied Physics Letters, 90 (15), 151113. doi: 10.1063/1.2722058
  15. Wadsworth, W. J., Knight, J. C., Reeves, W. H., Russell, P. S. J., Arriaga, J. (2000). Yb3+-doped photonic crystal fibre laser. Electronics Letters, 36 (17), 1452–1453. doi: 10.1049/el:20000942
  16. Chen, D. (2007). Stable multi-wavelength erbium-doped fiber laser based on a photonic crystal fiber Sagnac loop filter. Laser Physics Letters, 4 (6), 437–439. doi: 10.1002/lapl.200710003
  17. Broderick, N. G. R., Monro, T. M., Bennett, P. J., Richardson, D. J. (1999). Nonlinearity in holey optical fibers: measurement and future opportunities. Optics Letters, 24 (20), 1395–1397. doi: 10.1364/ol.24.001395
  18. Dudley, J. M., Taylor, J. R. (2009). Ten years of nonlinear optics in photonic crystal fibre. Nature Photon, 3 (2), 85–90. doi: 10.1038/nphoton.2008.285
  19. Yablonovitch, E., Gmitter, T., Leung, K. (1991). Photonic band structure: The face-centered-cubic case employing nonspherical atoms. Physical Review Letters, 67 (17), 2295–2298. doi: 10.1103/physrevlett.67.2295
  20. Birks, T. A., Atkin, D. M., Shepherd, T. J., Russell, P. S. J., Roberts, P. J. (1995). Full 2-D photonic bandgaps in silica/air structures. Electronics Letters, 31 (22), 1941–1943. doi: 10.1049/el:19951306
  21. Knight, J. C., Birks, T. A., Russell, P. S. J., Atkin, D. M. (1996). All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 21 (19), 1547–1549. doi: 10.1364/ol.21.001547
  22. Ho, H. L., Hoo, Y. L., Jin, W., Ju, J., Wang, D. N., Windeler, R. S., Li, Q. (2007). Optimizing microstructured optical fibers for evanescent wave gas sensing. Sensors and Actuators B: Chemical, 122 (1), 289–294. doi: 10.1016/j.snb.2006.05.036
  23. Bock, W. J., Chen, J., Eftimov, T., Urbanczyk, W. (2006). A Photonic Crystal Fiber Sensor for Pressure Measurements. IEEE Transactions on Instrumentation and Measurement, 55 (4), 1119–1123. doi: 10.1109/tim.2006.876591
  24. Fu, H. Y., Tam, H. Y., Shao, L.-Y., Dong, X., Wai, P. K. A., Lu, C., Khijwania, S. K. (2008). Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer. Applied Optics, 47 (15), 2835–2839. doi: 10.1364/ao.47.002835
  25. Moon, D. S., Kim, B. H., Lin, A., Sun, G., Han, Y.-G., Han, W.-T., & Chung, Y. (2007). The temperature sensitivity of Sagnac loop interferometer based on polarization maintaining side-hole fiber. Optics Express, 15(13), 7962. doi: 10.1364/oe.15.007962
  26. Kim, G., Cho, T., Hwang, K., Lee, K., Lee, K. S., Han, Y.-G., Lee, S. B. (2009). Strain and temperature sensitivities of an elliptical hollow-core photonic bandgap fiber based on Sagnac interferometer. Optics Express, 17 (4), 2481–2486. doi: 10.1364/oe.17.002481
  27. Kim, H.-M., Kim, T.-H., Kim, B., Chung, Y. (2010). Enhanced transverse load sensitivity by using a highly birefringent photonic crystal fiber with larger air holes on one axis. Applied Optics, 49 (20), 3841–3845. doi: 10.1364/ao.49.003841
  28. Dong, B., Hao, J., Liaw, C.-Y., Xu, Z. (2011). Cladding-Mode Resonance in Polarization-Maintaining Photonic-Crystal-Fiber-Based Sagnac Interferometer and Its Application for Fiber Sensor. Journal of Lightwave Technology, 29 (12), 1759–1763. doi: 10.1109/jlt.2011.2140313
  29. Kim, D.-H., Kang, J. U. (2004). Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity. Optics Express, 12 (19), 4490–4495. doi: 10.1364/opex.12.004490
  30. Frazão, O., Baptista, J. M., Santos, J. L., Roy, P. (2008). Curvature sensor using a highly birefringent photonic crystal fiber with two asymmetric hole regions in a Sagnac interferometer. Appl. Opt., 47 (13), 2520–2523. doi: 10.1364/ao.47.002520
  31. Andronova, I. A., Malykin, G. B. (2002). Physical problems of fiber gyroscopy based on the Sagnac effect. Physics-Uspekhi, 45 (8), 793–817. doi: 10.1070/pu2002v045n08abeh001073
  32. Shinde, Y. S., Kaur Gahir, H. (2008). Dynamic Pressure Sensing Study Using Photonic Crystal Fiber: Application to Tsunami Sensing. IEEE Photonics Technology Letters, 20 (4), 279–281. doi: 10.1109/lpt.2007.913741
  33. Kumar, V. V. R., George, A., Reeves, W., Knight, J., Russell, P., Omenetto, F., Taylor, A. (2002). Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Optics Express, 10 (25), 1520. doi: 10.1364/oe.10.001520
  34. Ebendorff-Heidepriem, H., Warren-Smith, S. C., Monro, T. M. (2009). Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores. Optics Express, 17 (4), 2646. doi: 10.1364/oe.17.002646
  35. Jiang, X., Euser, T. G., Abdolvand, A., Babic, F., Tani, F., Joly, N. Y., Travers, J. C., Russell, P. S. J. (2011). Single-mode hollow-core photonic crystal fiber made from soft glass. Optics Express, 19 (16), 15438–15444. doi: 10.1364/oe.19.015438
  36. Jha, R., Villatoro, J., Badenes, G. (2008). Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing. Applied Physics Letters, 93 (19), 191106:1–191106:3. doi: 10.1063/1.3025576
  37. Jha, R., Villatoro, J., Badenes, G., Pruneri, V. (2009). Refractometry based on a photonic crystal fiber interferometer. Optics Letters, 34 (5), 617–619. doi: 10.1364/ol.34.000617
  38. Cárdenas-Sevilla, G. A., Finazzi, V., Villatoro, J., Pruneri, V. (2011). Photonic crystal fiber sensor array based on modes overlapping. Optics Express, 19 (8), 7596–7602. doi: 10.1364/oe.19.007596
  39. Zhang, Y., Li, Y., Wei, T., Lan, X., Huang, Y., Chen, G., Xiao, H. (2010). Fringe visibility enhanced extrinsic Fabry-Perot interferometer using a graded index fiber collimator. IEEE Photonics Journal, 2 (3), 469–481. doi: 10.1109/jphot.2010.2049833
  40. Tuchin, V. V., Skibina, Ju. S., Beloglazov V. I. et. al. (2008). Sensornye svojstva fotonno-kristallicheskogo volnovoda s poloj serdcevinoj. Pis'ma v ZhTF, 34 (15), 63–69.
  41. Russell, P. J. (2006). Photonic-Cristal Fibers. Journal of Lightwave technology, 24 (12), 4729–4749.
  42. Fedotov, A. B., Kononov, S. O., Koletovatova, O. A. et. al. (2003). Volnovodnye svojstva i spektr sobstvennyh mod polyh fotonno-kristallicheskih volokon. Kvantovaja jelektronika, 33 (3), 271–274.
  43. Chen, W. (2010). Ring-core photonic crystal fiber interferometer for strain measurement. Optical Engineering, 49 (9), 094402. doi: 10.1117/1.3488045
  44. Mogilevtsev, D., Birks, T. A., Russell, P. S. J. (1999). Localized function method for modeling defect modes in 2-D photonic crystals. Journal of Lightwave Technology, 17 (11), 2078–2081. doi: 10.1109/50.802997

Downloads

Published

2015-02-26

How to Cite

Ali Muse, H. (2015). Fiber-optic gyroscopes based on photonic-crystal fibers. Eastern-European Journal of Enterprise Technologies, 1(5(73), 25–31. https://doi.org/10.15587/1729-4061.2015.37799