Error analysis of the measuring tool of the missile element speed in the barrel of small arms

Authors

  • Олександр Михайлович Крюков National Academy of the National guard of MIA of Ukraine (Kharkov) Povstannya sq. 3, Kharkov, Ukraine, 61001, Ukraine
  • Олег Юрійович Шабалін National Academy of the National guard of MIA of Ukraine (Kharkov) Povstannya sq. 3, Kharkov, Ukraine, 61001, Ukraine
  • Вадим Геннадійович Мудрик National Academy of the National guard of MIA of Ukraine (Kharkov) Povstannya sq. 3, Kharkov, Ukraine, 61001, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2015.38064

Keywords:

measuring tool, missile element, small arms, mathematical model, relative error

Abstract

sources include the following factors:

–– deviation of the parameters of the optical scheme elements;

–– imperfection of the algorithm, which was implemented in the computing component;

–– presence of rotational motion of the missile element in the barrel.

The deviation of the laser radiation frequency and laser sensing angles from their nominal values significantly affect the error. A mathematical model of the measuring tool error, linking deviations of parameters from the nominal values and permissible relative error was developed.

The computing component error is mainly caused by the imperfection of the fast Fourier transform algorithm used. To estimate this component of the error, a method that allows to determine the difference between the value of the Doppler frequency shift, obtained by computing component data and its reference value was developed.

Error, due to the rotational motion of the missile element, is caused by the deviation of the sensing point of its surface from the sensing plane. Based on the analysis of the spatial arrangement of the components of the velocity vector of the missile element point, a mathematical model of this component of the error was developed.

A generalized mathematical model of the measuring tool error, containing the result of combining the components taking into ac­count possible correlations between them was proposed. Quantitative estimation of the maximum permissible error was performed. 

Author Biographies

Олександр Михайлович Крюков, National Academy of the National guard of MIA of Ukraine (Kharkov) Povstannya sq. 3, Kharkov, Ukraine, 61001

Doctor of technical sciences Professor

Department of weapons and special machinery

Олег Юрійович Шабалін, National Academy of the National guard of MIA of Ukraine (Kharkov) Povstannya sq. 3, Kharkov, Ukraine, 61001

Candidate of Military Sciences, Deputy Head of armament and military equipment NANG Ukraine – head of the technical field

Вадим Геннадійович Мудрик, National Academy of the National guard of MIA of Ukraine (Kharkov) Povstannya sq. 3, Kharkov, Ukraine, 61001

Postgraduate student

References

  1. Serebryakov, M. E. (1949). Vnutrennya balistica. Moscow: Oboronizdat GIOP, 469.
  2. Golombovskiy, A. K. (1973). Teoria i raschet avtomaticheskogo orugiya. Penza: PVAEU, 492.
  3. Kriukov, O. M., Mudrik, V. G. (2013). Perspektuvu eksperimentalnogo vuznachennya balistuchnuh elementiv postrilu. Akad. Of Int. Forses Ukraine, 1, 21–24
  4. Kriukov, O. M., Dolya, G. N., Mudrik, V. G. (2014). Patent 88172 Ukraine, WPК G 01 S 17/02 (2006.01) Lazernuy dopplerivskuy vumiruvach shvudkosti ruhu metalnogo elementu v kanali stvola. Stated. 10.06.2013; Publish 11.03.2014, 8.
  5. Kriukov, O. M., Dolya, G. N., Mudrik, V. G. (2013). Differenzialnaya lazernaya doplerovskaya anemometriya ob’ektov so svetovozvrashauschej poverhnostju. HNU of RE: science-techn. Joural. Kharkiv: Prikladnaya radioelectronica, 12 (3), 436–441.
  6. Kriukov, O. M., Dolya, G. N., Mudrik, V. G., Nadj, O. A., Koval, O. A. (2014). Lazerniy doplerovskiy zasib vumiruvanya shvudkosti ruhu metalnogo elementa v kanali stvola: budova ta obroblennya vumiruvalnoi informacii. HNU of RE: scienc. Journal. Kharkiv: Metrologiya ta pruladu, 1 (45), 151–154.
  7. Mihajlov, K. V. (1976). Eksperimentalnaya balistica. Priboru I metodu ballisticheskih izmerenij. Sophiya: VТS, 388.
  8. Smith, J. N., Oak, R., Tenn (1954). Patent 2691761 USA, WPK G 01 S 13/58. Microwave measuring of projectile speed. № 6088; Stated. 03.02.1948; Publish. 12.10.1954, NKI 342/105; 73/167, 6.
  9. Toulios, P. P., Hartman, K. (1984). Patent 4457206 USA, WPK G 01 S 13/58; F42 C17/04. Microwave – type projectile communication apparatus for guns. № 06/269,489; Stated. 02.06.1981; Publish. 03.07.1984, NKI 89/14.5, 37.
  10. Reinhard, B., Bernhard, Z. (1993). Patent 0415906 DE, WPK G 01 S 13/58; G 01 P 3/66. Method and device for the determination of parameters of motion. № 19900809; Stated. 09.08.1990; Publish. 10.02.1993, NKI G 01 S 13/58 F; G 01 P 3/66 B, 8.
  11. Kriukov, O. M., Alexandrov, O. O. (2009). Problemu vumiruvalnogo kontroliu parametriv vnutrishnjobalistuchnuh procesiv. Chestj i zakon, 2, 79–89
  12. Vugodskiy, M. Ya. (2006). Spravochnik po vushej matematike. Moscow: AST: Astrel, 991.
  13. Vusokotochnuj shirokodiapazonnuj izmeritel dlinu volnu. Available at: http://solarlaser.com/ru/products/high-resolution-wavelength-meters/high-resolution-wide-range-wavelength-meter-model-shr-/
  14. Goniometr-spektrometr. Available at: http://www.rostest.ru/Goniometer%20spectrometer%20GS-2.php

Published

2015-02-25

How to Cite

Крюков, О. М., Шабалін, О. Ю., & Мудрик, В. Г. (2015). Error analysis of the measuring tool of the missile element speed in the barrel of small arms. Eastern-European Journal of Enterprise Technologies, 1(7(73), 36–41. https://doi.org/10.15587/1729-4061.2015.38064

Issue

Section

Applied mechanics