Development of intelligent system of automatic diagnostics of gas-turbine engine modes

Authors

  • Микола Петрович Кравчук National Aviation University Komarova Ave, 1, Kiev, Ukraine, 03058, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2015.38088

Keywords:

gas turbine engine, intelligent system, control reconfiguration, diagnostic system, technical condition

Abstract

Efficiency of GTE in any field depends on the technical condition (TC) and operating economy. At present, one of the promising development areas of the maintenance and repair systems of GTE is the transition to the exploitation by the technical condition. The issue of increasing the efficiency of defining the current condition of the engine and forecasting trends in its vibration parameters that characterize this condition, e.i., diagnosing and predicting the future condition of the GTE plays an important role in solving this problem. Among the numerous methods of technical diagnostics of GTE, vibration diagnostics methods that are focused on using diagnostic information about oscillatory processes of machines and structures hold a special place. The basic problems of gas-turbine engine (GTE) diagnostics by the technical condition (TC) were described. The structural and functional description of intelligent system of automatic diagnostics and reconfiguration of control (ISADRC) over the GTE operating modes based on the integration of fuzzy logic and neural networks was proposed. The operating principle, training algorithm and software complex of the hybrid ISADRC were given. The feasibility of the hybrid ISADRC based on the radial-basis networks and fuzzy logic theory, integration of fuzzy logic and neural networks was substantiated. Theoretical and experimental capabilities of the developed ISADRC were investigated in order to assess its effectiveness for classifying the TC of the GTE and reconfiguring its operating modes.

Author Biography

Микола Петрович Кравчук, National Aviation University Komarova Ave, 1, Kiev, Ukraine, 03058

PhD, Assistant

Automation and Energy Management Department

References

  1. Dubrovin, V. I., Subbotin, S. A., Boguslaev, A. V., Jacenko, V. K. (2003). Intellektul'nye sredstva diagnostirovanija i prognozirovanija nadezhnosti aviadvigatelej. Zaporozh'e: OAO «Motor–Sіch», 279.
  2. Gasidzhak, V. S., Kazak, V. M. (2007). Bajesovs'kij algoritm rozpіznavannja peredvіdmovnih stanіv gazoperekachuval'nih agregatіv. Vіsnik central'nogo naukovogo centru TAU, 10,77−78
  3. Epifanov, S. V., Kuznecov, B. I., Bogaenko, I. M., Grabovskij, G. G. (1998). Sintez sistem upravlenija i diagnostirovanija gazoturbinnyh dvigatelej. Kiev: Tehnika, 312.
  4. Panin, V. V., Kinashhuk, I. F., Orlanov, V. I. (2001). Sposob ocenki tehnicheskogo sostojanija kompressorov GTD. Avіacіjno–kosmіchna tehnіka і tehnologіja, 26, 236–239.
  5. Bodjanskij, E. V., Rudenko, O. G. (2004). Iskusstvennye nejronnye seti: arhitektura, obuchenie, primenenie. Kharkiv: TELETEH, 372.
  6. Buravlev, A. I., Docenko, B. I., Kazakov, I. E. (1995). Upravlenie tehnicheskim sostojaniem dinamicheskih sistem. Moscow: Mashinostroenie, 240.
  7. Zarickij, S. P. (1986). Diagnostika gazoperekachivajushhih agregatov s gazoturbinnym privodom. Moscow: Nedra, 198.
  8. Dmitriev, S. A. (1996). Diagnostirovanie protochnoj chasti GTD na ustanovivshihsja i neustanovivshihsja rezhimah raboty. Kiev: KMUGA, 358.
  9. Rotshtejn, A. P. (1999). Intellektual'nye tehnologii identifikacii: nechetkie mnozhestva, geneticheskie algoritmy, nejronnye seti. Vinnica: UNІVERSUM–Vіnnicja, 320.
  10. Dzhordzh, F. L. (2003). Iskusstvennyj intellekt: strategii i metody reshenija slozhnyh problem, 4–e izdanie. Moscow: Izdatel'skij dom «Vil'jams», 864.

Published

2015-02-27

How to Cite

Кравчук, М. П. (2015). Development of intelligent system of automatic diagnostics of gas-turbine engine modes. Eastern-European Journal of Enterprise Technologies, 1(3(73), 57–64. https://doi.org/10.15587/1729-4061.2015.38088

Issue

Section

Control processes