Influence of the nature, size and shape of the solvent molecules on their diffusion in the polymer

Authors

  • Инесса Анатольевна Буртная National Technical University of Ukraine "Kyiv Polytechnic Institute" Pobedy avenue, 37, Building 4, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0003-4550-9022
  • Отар Отарович Гачечиладзе JP "The Georgian-Ukrainian House" lane. Museum, 10, Kiev, Ukraine, 01001, Ukraine https://orcid.org/0000-0002-9702-7167

DOI:

https://doi.org/10.15587/1729-4061.2015.38571

Keywords:

membrane, polymer, diffusion, segment, energy, activation, crosslinking, pervaporation, sorption

Abstract

Using polymeric membranes for separating mixtures of liquid hydrocarbons, such as crude oil, gas condensate, shale oil, pyrolysis liquid is very important and promising direction for the oil refining industry and obviously can be an alternative to convection technologies. The paper investigates the possibilities of using non-porous polymeric membrane based on silicone synthetic rubber with stiff matrix. The stiffness of the matrix was achieved by increasing the degree of crosslinking. The high degree of crosslinking decreases sharply macromolecular segmental mobility, which in turn allows to reduce the permeability of the membrane elements for complex heavy molecules. Thus, by adjusting the pervaporation parameters, only those substances can be extracted from a gas condensate in the temperature range of 35 - 65°C, which are components of the gasoline fraction with a boiling point of 35°C and the end boiling point of 215ºC. Moreover, using the differences between the values of diffusion activation energies and diffusion coefficients of various substances in the gasoline fraction, as well as the dependence of these values on the temperature and time allows to achieve the decomposition of fraction into components. Using an experimental membrane setup at atmospheric pressure and relatively low temperatures (35 - 65°C), all the gasoline fraction components were extracted, which were in turn were decomposed into four groups of substances depending on the size, shape and nature of the molecules.

Author Biographies

Инесса Анатольевна Буртная, National Technical University of Ukraine "Kyiv Polytechnic Institute" Pobedy avenue, 37, Building 4, Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of Bioengineering and Engineering. Faculty of Biotechnology and Bioengineering

Отар Отарович Гачечиладзе, JP "The Georgian-Ukrainian House" lane. Museum, 10, Kiev, Ukraine, 01001

Candidate of Physical and Mathematical Sciences

Director

References

  1. Burtna, I. (2013). Transfer processes in polymer membranes. Part 2. Eastern-European Journal of Enterprise Technologies, 2/11(61), 41–44. Available at: http://journals.uran.ua/eejet/article/view/11731/9873
  2. Burtna, I., Gachechiladze, O. (2014). Experimental determination of possible models of diffusion during pervaporation process in polymer membranes. Eastern-European Journal of Enterprise Technologies, 5/6(71), 26–32. Available at: http://journals.uran.ua/eejet/article/view/27661/25044
  3. Hansen, C. M., Smith, A. L. (2004). Using Hansen solubility parameters to correlate solubility of c 60 fullerene in organic solvents and in polymers. Carbon, 42 (8-9), 1591–1597. doi: 10.1016/j.carbon.2004.02.011
  4. Shao, D., Huang, R. Y. M. (2007). Polymeric membrane Pervaporation. Journal of Membrane Science, 287, 162–179. doi: 10.1016/j.memsci.2006.10.043
  5. Buckley-Smith, M. K. (2006). The Use of Solubility Parameters to select membrane materials for Pervaporation of organic mixtures. The University of WAIKATO, Hamilton, NewZealand, 18–56.
  6. Moller, K., Gevert, T. (1994). An FTIR solid-state analysis of the diffusion of hindered phenols in low-density polyethylene (LDPE): The effect of molecular size on the diffusion coefficient. Journal of Applied Polymer Science, 51/5, 895–903. doi: 10.1002/app.1994.070510512
  7. Koszinowski, J. (1986). Diffusion and solubility of n-alkanes in polyolefins. Journal of Applied Polymer Science, 32/5, 4765–4786. doi: 10.1002/app.1986.070320501
  8. Blyholder, G., Prager, S. (1960). The diffusion of hydrocarbons in polyisobutylene. Journal of Physical Chemistry, 64/5, 702–703. doi: 10.1021/j100834a520
  9. Koszinowzki, J. (1986). Diffusion and solubility of hydroxy in polyolefines. Journal of Applied Polymer Science, 31/8, 2711–2720. doi: 10.1002/app.1986.070310826
  10. Kulkarni, M. G., Mashelkar, R. A. (1981). On the role of penetrant structure in diffusion in structured polymers. Polymer, 22 (12), 1665–1672. doi: 10.1016/0032-3861(81)90383-9
  11. Chen, S. P., Ferry, J. D. (1968).The Diffusion of Radioactively Tagged n-Dodecane through Rubbery Polymers, 1/3, 270–278. doi: 10.1021/ma60003a014
  12. Brandt, W. W. (1959). Model Calculation of the Temperature Dependence of Small Molecules Diffusion in High Polymers.Journal of Physical Chemistry, 63/7, 1080–1085. doi: 10.1021/j150577a012
  13. Vrentas, J. S., Duda, J. L. (1977). Diffusion in Polymer – Solvent Systems; I. Re-examination of the Free-Volume Theory. Journal of Polymer Science: Polymer Physics Edition, 15, 403–416. doi: 10.1002/pol.1977.180150302
  14. Vrentas, J. S., Duda, J. L. (1977). Diffusion in Polymer – Solvent Systems; II.A Predictive Theory for the Dependence of Diffusion Coefficient on Temperature, Concentration and Molecular Weight. Journal of Polymer Science: Polymer Physics, 15/3, 417–439. doi: 10.1002/pol.1977.180150303
  15. George, S. C., Thomas, S. (2001). Transport phenomena through polymeric systems. Progress in Polymer Science, 26, 985–1017. doi: 10.1016/S0079-6700(00)00036-8
  16. Burtna, I. A., Gachechiladze, O. O., Shafarenko, N. V. (2012). Membranes allocation of kerosene and diesel fractions of a mixture of heavy oil and gas condensate. Industrial Service, 1 (42), 2–3. Available at: http://www.nitu.ru/tpps/2012_1.pdf

Published

2015-04-20

How to Cite

Буртная, И. А., & Гачечиладзе, О. О. (2015). Influence of the nature, size and shape of the solvent molecules on their diffusion in the polymer. Eastern-European Journal of Enterprise Technologies, 2(6(74), 4–11. https://doi.org/10.15587/1729-4061.2015.38571

Issue

Section

Technology organic and inorganic substances