Modeling of the flow structure in echeloned grids of stabilizers by varying their displacement step

Authors

  • Наталия Михайловна Фиалко Institute of Engineering Thermophysics National Academy of Science of Ukraine Zhelyabov 2а, Kyiv, Ukraine, 03057, Ukraine
  • Юлий Владиславович Шеренковский Institute of Engineering Thermophysics National Academy of Science of Ukraine Zhelyabov 2а, Kyiv, Ukraine, 03057, Ukraine https://orcid.org/0000-0003-1765-7319
  • Виктор Григорьевич Прокопов Institute of Engineering Thermophysics National Academy of Science of Ukraine Zhelyabov 2а, Kyiv, Ukraine, 03057, Ukraine https://orcid.org/0000-0002-9026-8742
  • Нина Петровна Полозенко Institute of Engineering Thermophysics National Academy of Science of Ukraine Zhelyabov 2а, Kyiv, Ukraine, 03057, Ukraine https://orcid.org/0000-0002-0272-5385
  • Наталья Олеговна Меранова Institute of Engineering Thermophysics National Academy of Science of Ukraine Zhelyabov 2а, Kyiv, Ukraine, 03057, Ukraine
  • Сергей Александрович Алешко Institute of Engineering Thermophysics National Academy of Science of Ukraine Zhelyabov 2а, Kyiv, Ukraine, 03057, Ukraine https://orcid.org/0000-0002-0430-7144
  • Геннадий Владимирович Иваненко Institute of Engineering Thermophysics National Academy of Science of Ukraine Zhelyabov 2а, Kyiv, Ukraine, 03057, Ukraine https://orcid.org/0000-0001-9492-8333
  • Владимир Леонидович Юрчук Institute of Engineering Thermophysics National Academy of Science of Ukraine Zhelyabov 2а, Kyiv, Ukraine, 03057, Ukraine https://orcid.org/0000-0003-2718-7568
  • Евгений Иванович Милко Institute of Engineering Thermophysics National Academy of Science of Ukraine Zhelyabov 2а, Kyiv, Ukraine, 03057, Ukraine https://orcid.org/0000-0002-4687-0998
  • Нина Николаевна Ольховская Institute of Engineering Thermophysics National Academy of Science of Ukraine Zhelyabov 2а, Kyiv, Ukraine, 03057, Ukraine https://orcid.org/0000-0001-7903-7225

DOI:

https://doi.org/10.15587/1729-4061.2015.39193

Keywords:

flame stabilizer grid, stabilizer displacement step, fuel and oxidizer flow

Abstract

The paper deals with investigating the fuel and oxidizer flow patterns in the ladder echeloned grids of flame stabilizers by varying their displacement step relative to each other along the flow. Based on the mathematical modeling, the effects of the specified step on the redistribution nature of the air flows in stabilizer grid channels were studied, and the fact of the flow pattern asymmetry increase with the displacement step increase was established. The analysis of the features of the circulation flow in the near wake of stabilizers at different values of their displacement step along the flow was performed. The results of investigations on determining the influence patterns of the stabilizer displacement step on pulsating flow characteristics were presented. It was found that an increase of this step causes a significant reduction in velocity fluctuations in astern stabilizer areas. Studies on determining the dependence of the pressure loss on the stabilizer displacement step in the considered stabilizer-type burner device were performed. It is shown that specified pressure losses are reduced considerably with displacement step increase.

Author Biographies

Наталия Михайловна Фиалко, Institute of Engineering Thermophysics National Academy of Science of Ukraine Zhelyabov 2а, Kyiv, Ukraine, 03057

Honored worker of Scientist of Ukraine, Corresponding Member of the, Doctor of Technical Science, Professor, Head of Small Power Department NAS of Ukraine

Юлий Владиславович Шеренковский, Institute of Engineering Thermophysics National Academy of Science of Ukraine Zhelyabov 2а, Kyiv, Ukraine, 03057

Candidate of Technical Sciences, Leading Researcher

Виктор Григорьевич Прокопов, Institute of Engineering Thermophysics National Academy of Science of Ukraine Zhelyabov 2а, Kyiv, Ukraine, 03057

Doctor of Technical Science, Leading Researcher,

Нина Петровна Полозенко, Institute of Engineering Thermophysics National Academy of Science of Ukraine Zhelyabov 2а, Kyiv, Ukraine, 03057

Research Associate

Наталья Олеговна Меранова, Institute of Engineering Thermophysics National Academy of Science of Ukraine Zhelyabov 2а, Kyiv, Ukraine, 03057

Candidate of Technical Sciences, Leading Researcher

Сергей Александрович Алешко, Institute of Engineering Thermophysics National Academy of Science of Ukraine Zhelyabov 2а, Kyiv, Ukraine, 03057

Candidate of Technical Sciences, Senior Research

Геннадий Владимирович Иваненко, Institute of Engineering Thermophysics National Academy of Science of Ukraine Zhelyabov 2а, Kyiv, Ukraine, 03057

Candidate of Technical Sciences, Senior Research

Владимир Леонидович Юрчук, Institute of Engineering Thermophysics National Academy of Science of Ukraine Zhelyabov 2а, Kyiv, Ukraine, 03057

Candidate of Technical Sciences, Senior Research

Евгений Иванович Милко, Institute of Engineering Thermophysics National Academy of Science of Ukraine Zhelyabov 2а, Kyiv, Ukraine, 03057

Senior Research

Нина Николаевна Ольховская, Institute of Engineering Thermophysics National Academy of Science of Ukraine Zhelyabov 2а, Kyiv, Ukraine, 03057

Research Associate

References

  1. Lyubchik, G. N., Mikulin, G. A, Varlamov, G. B., Marchenko, G. S.; Voronovsky, G. K., Nedina, I. V. (Eds.) (2006). Use of tubular combustion technology in devices and decentralized heating systems. In. "Small-scale power in the economic security of the state". Kiev: Knowledge of Ukraine, 139–151.
  2. Mikulin, G. A., Lyubchik, G. N. (2004). Аerodynamic characteristics and mass transfer properties of the tubular combustion enhancers and stabilizers flame. Energy: the economy, technology, ecology, 15 (2), 54–62.
  3. Abdulin, M. Z., Isaev, S. A., Lysenko, D. A. (2005). Numerical simulation of turbulent heat transfer in the burner based on the jet-fuel combustion technology niche. Heat and mass transfer and hydrodynamics in swirling flows: Tr. 2nd Russian Conference. Moscow: MEI Publishing, 84–85.
  4. Sjunnesson, A., Nelsson, С., Erland, М. (1991). LDA measurements of velocities and turbulence in a bluff body stabilized flame. NUTEK Report, 89–95.
  5. Gran, I. R., Magnussen, B. F. (1996). A numerical study of a bluff-body stabilized diffusion flame. Part 2. Influence of combustion modeling and finite-rate chemistry. Combustion Science and Technology, 119 (1-6), 119–191. doi: 10.1080/00102209608951999
  6. Granovska, O. O. (2014). Improving stabilizatornyh burners with gas burning mikrofakelnomu. Thermal and nuclear power plant. Kyiv, 26.
  7. Rauschenbach, B. V., White, S. A., Bespalov, I. V. et al. (1964). Physical basis of the working process in the combustion chambers of jet engines. Moscow: Engineering, 526.
  8. Fialko, N. M., Рrokopov, V. G., Butovsky, L. S., Sherenkovsky, Y. V., Meranova, N. O., Aleshko, S. A., Polozenko, N. P. (2010). Simulation of flow structure isothermal flow in layered lattice plane flame stabilizers. Industrial Heat Engineering, 6, 28–36.
  9. Fialko, N. M., Рrokopov, V. G., Butovsky, L. S., Sherenkovsky, Y. V., Aleshko, S. A., Meranova, N. O., Polozenko, N. P. (2011). Peculiarities of fuel and oxidant when layered arrangement of flame stabilizers. Industrial Heat Engineering, 2, 59–64.
  10. Fialko, N. M., Рrokopov, V. G., Sherenkovsky, Y. V., Aleshko, S. A., Meranova, N. O., Polozenko, N. P., Abdulin, M. Z., Butovsky, L. S., Melnik, P. M. (2014). Influence quantity flame stabilizers on the course in echelon stabilizer lattices. “Problems of ecology and exploitation of energy facilities”. Kiev: CPI ALCON of NAS of Ukraine, 125–128
  11. Fialko, N. M., Рrokopov, V. G., Sherenkovsky, Y. V., Aleshko, S. A., Ivanenko, G. V., Abdulin, M. Z., Kutniak, O. N., Ozerov, A. A., Butovsky, L. S. (2014). The structure of the flow in microjet burners with flame stabilizers layered lattices. Scientific Bulletin of National University of Life and Environmental Sciences of Ukraine. A series of "Technology and Energy AIC." 194/3, 107–113.
  12. Fialko, N. M., Рrokopov, V. G., Sherenkovsky, Y. V., Aleshko, S. A., Polozenko, N. P., Butovsky, L. S., Abdulin, M. Z. (2014). Laws of mixing in echelon arrays of flat flame stabilizers. Naukova News NLTU Ukraine, 24.7, 187–191.
  13. Snegiryov, A. J. (2009). High-performance computing in technical physics. Numerical simulation of turbulent flows: a tutorial. St. Petersburg: Publishing House of the Polytechnic. University Press, 143.
  14. Volkov, K. N., Emelyanov, V. N. (2008). Large-eddy simulation of turbulent flows in the calculations. M.: FIZMATLIT, 368.
  15. Garbaruk, A. V., Strelets, M. Kh., Shur, M. L. (2012). Simulation of turbulence in the calculation of complex flows: a tutorial. St. Petersburg: Publishing House of the Polytechnic. University Press, 88.
  16. Spalart, P. R. (2000). Strategies for turbulence modeling and simulations. Int. Jun 2000 in International Journal of Heat and Fluid Flow, 21 (3), 252–263. doi: 10.1016/s0142-727x(00)00007-2
  17. Ferziger, J. H., Rodi, W., Bergeles, G. (1996). Recent Advances in Large Eddy Simulation. Engineering Turbulence Modelling and Experiments, 3, 163–176. doi: 10.1016/b978-0-444-82463-9.50022-8
  18. Oran, E. S., Boris, J. P. (2001). Numerical simulation of reactive flow. Cambridge University Press, 529. doi: 10.1017/cbo9780511574474.001
  19. Grinstein, F. F., Margolin, L. G., Rider, W. J. (2007). Implicit Large Eddy Simulation. Cambridge University Press, 562. doi: 10.1017/cbo9780511618604
  20. Spalart, P. R., Deck, S., Shur, M. L., Squires, K. D., Strelets, M. Kh., Travin, A. (2006). A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoretical and Computational Fluid Dynamics, 20 (3), 181–195. doi: /10.1007/s00162-006-0015-0

Published

2015-04-10

How to Cite

Фиалко, Н. М., Шеренковский, Ю. В., Прокопов, В. Г., Полозенко, Н. П., Меранова, Н. О., Алешко, С. А., Иваненко, Г. В., Юрчук, В. Л., Милко, Е. И., & Ольховская, Н. Н. (2015). Modeling of the flow structure in echeloned grids of stabilizers by varying their displacement step. Eastern-European Journal of Enterprise Technologies, 2(8(74), 29–34. https://doi.org/10.15587/1729-4061.2015.39193

Issue

Section

Energy-saving technologies and equipment