The impact of capillary structure properties on heat transfer from boiling in limited space

Authors

  • Александра Александровна Баскова National Technical University of Ukraine "Kyiv Polytechnic Institute" Pobedy ave., 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0003-2864-8995
  • Владимир Юрьевич Кравец National Technical University of Ukraine "Kyiv Polytechnic Institute" Pobedy ave., 37, Kyiv, Ukraine, 03056, Ukraine
  • Ольга Сергеевна Алексеик National Technical University of Ukraine "Kyiv Polytechnic Institute" Pobedy ave., 37, Kyiv, Ukraine, 03056, Ukraine
  • Наталия Леонидовна Лебедь National Technical University of Ukraine "Kyiv Polytechnic Institute" Pobedy ave., 37, Kyiv, Ukraine, 03056, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2015.39205

Keywords:

heat transfer intensification, fiber length, boiling, capillary and porous structure (CPS), limited space

Abstract

Modern cooling systems for radio and electronic equipment widely use heat pipes. The main element of heat pipes is capillary and porous structure (CPS), on which a heat transfer agent boils and condensates. Previous studies showed that intensity of heat transfer depends on geometric parameters of the CPS. Our research is devoted to analyzing experimental data on the intensity of heat transfer from boiling in limited space on the CPS with various fiber lengths. We have determined the impact of space limit on boiling intensity on the CPS. The analysis of the findings has proved that within limited space, when the height of the volume limiter is 5 to 16 mm above the working surface and the density of the heat flow rises to 200 kW/m2, the intensity of heat transfer increases. A comparison of boiling intensity on CPSs in large space with boiling intensity in limited space has shown that at the fiber length of 5 mm heat transfer coefficients are similar. Further fiber lengthening leads to decrease in heat transfer intensity.

Author Biographies

Александра Александровна Баскова, National Technical University of Ukraine "Kyiv Polytechnic Institute" Pobedy ave., 37, Kyiv, Ukraine, 03056

Department of Nuclear Power Plants and Engineering Thermophysics

Владимир Юрьевич Кравец, National Technical University of Ukraine "Kyiv Polytechnic Institute" Pobedy ave., 37, Kyiv, Ukraine, 03056

Associate Professor, Candidate of technical science

Department of Nuclear Power Plants and Engineering Thermophysics

Ольга Сергеевна Алексеик, National Technical University of Ukraine "Kyiv Polytechnic Institute" Pobedy ave., 37, Kyiv, Ukraine, 03056

Assistant

Department of Nuclear Power Plants and Engineering Thermophysics

Наталия Леонидовна Лебедь, National Technical University of Ukraine "Kyiv Polytechnic Institute" Pobedy ave., 37, Kyiv, Ukraine, 03056

Associate Professor, Candidate of technical science

Department of Nuclear Power Plants and Engineering Thermophysics

References

  1. Report Ukrainian participant of the project «Development and creation of heat pipes on a basis metalfibrous capillary structures with improved thermophysic characteristics for temperature control systems of the perspective space vehicles» - Institute for Problems of Materials. IN Frantsevich National Academy of Sciences of Ukraine for the 2007 - 2008 year. Sat. scientific. Works (2007–2008). National Academy of Sciences of Ukraine. Kiev, 55.
  2. Genske, P., Stephan, K. (2006). Numerical simulation of heat transfer during growth of single vapor bubbles in nucleate boiling. International journal of thermal sciences, 45, 299–309. doi: 10.1016/j.ijthermalsci.2004.07.008
  3. Nakoryakov, V. E., Kuznetsov, V. V. (2010). Teplomassobmen pri fazovikh perekhodakh s himicheskih prevrasheniakh v mikrocanalnikh sistemakh, 167.
  4. Grigoriev, V. A., Krokhin, Y., Kulikov A. S. (1972). Teploobmen pri kipenii v verticalnukh shelevukh kanalakh, Proc. MEI. Heat and mass transfer processes and devices, 141, 58–68.
  5. Amethyst, E. V., Klimenko, V. V., Pavlov, Y. M. (1995). Kipenie kriogennukh gidkostei, Energoatomizdat, 400.
  6. Ishibashi, T., Nishikawa, H. (1969). Saturated boiling heat transfer in narrow spases, Journal Heat and Mass Transfer, 12 (8), 863–893.
  7. Vishnev, I. P., Vinokur, J. G., Shaposhnikov, V. A., Gorokhov, V. V. (1972). Heat and Mass, 2, 263–270.
  8. Wojcik, T. M. (2009). Experimental investigation of boiling heat transfer hysteresis on sintered, metal – Fibrous, porous structures. Experimental Thermal and Fluid Science, 33 (3), 397–404. doi: 10.1016/j.expthermflusci.2008.10.011
  9. Alam, M. S., Prasad, L., Gupta, S. C., Agarwal, V. K. (2008). Enhanced boiling of saturated water on copper coated heating tubes. Chemical Engineering and Processing: Process Intensification, 47 (1), 159–167. doi: 10.1016/j.cep.2007.07.021
  10. Kim, J. H., Rainey, K. N., You, S. M., Pak, J. V. (2002). Mechanism of nucleate boiling heat transfer enhancement from micro-porous surfaces in saturated FC – 72. Journal of Heat Transfer, 124 (3), 500–506. doi: 10.1115/1.1469548
  11. Butkovskiy, A. A. (1985). Teploobmen pri kipenii vodu i acetona na poverkhnostiakh s metallovoloknistumi kappiliarno-poristumi pokrutiami. Kiev, 23.
  12. Alekseik, O. S. (2013). Vlianie kharakteristik poristoi structuri na intensivnost kipenia v teplovoi trube. Energy and energy efficiency, 6/5, 29–31.
  13. Ovsyannikov, A. V. (2004). Teploobmen pri kipenii na razvitukh poverkhnostiakh v promushlennukh teploobmennukh apparatakh. Moscow, 43.
  14. Nishikava, K., Fujita, Y., Ohta, H., Hidaka, S. (1982). Effects of system pressure and surface roughness on nucleate boiling heat transfer. Memoirs of the Faculty of Engineering, Kyushu University, 95–111.
  15. You, S. M., Simon, T. W., Bar-Cohen, A. (1990). Experiments on nucleate biling transfer with a highly-wetting dielectric fluid: effects of pressure, subcooling and dissolved gas content. Cryogenic and Immersion Cooling of Optics and Electronic Equipment, 131, 45–52.
  16. Alekseik, O. S., Kravets, V. Y. (2012). Influence of free space high on boiling heat-transfer intensity on porous structure. Eastern-European Journal of Enterprise Technologies, 4/8 (58), 24–27. Available at: http://journals.uran.ua/eejet/article/view/5725/5132

Published

2015-04-10

How to Cite

Баскова, А. А., Кравец, В. Ю., Алексеик, О. С., & Лебедь, Н. Л. (2015). The impact of capillary structure properties on heat transfer from boiling in limited space. Eastern-European Journal of Enterprise Technologies, 2(8(74), 42–46. https://doi.org/10.15587/1729-4061.2015.39205

Issue

Section

Energy-saving technologies and equipment