Creating the flowing part of the high energy-efficiency torque flow pump

Authors

DOI:

https://doi.org/10.15587/1729-4061.2015.39934

Keywords:

torque-flow pump, misaligned spiral, numerical modeling, specific speed, flow non-uniformity

Abstract

The paper deals with investigating the basic parts of torque-flow pumps (TFP) and searching for energy-efficient casing in the pump with high specific speed.

TFP are widely used, but in some cases it is necessary to disregard efficiency of the pump in order to ensure reliable operation in harsh conditions. Therefore, the TFP efficiency increase is an urgent task.

The methodology of designing "Turo" type TFP with the high-speed misaligned spiral casing was presented in the paper.

As a result of numerical studies, distribution patterns of velocities and pressures in the TFP flowing part, which allowed qualitatively evaluate the performance of the investigated casing structures were obtained. Analysis of the results indicates the feasibility of the casing housing of TFP with the misaligned spiral.

Full-scale testing was performed, and pressure and energy characteristics of TFP with different housing designs were obtained. Based on the tests, it can be argued that a new technical solution of the TFP housing with the misaligned spiral casing was obtained.

The results allow to design TFP with increased energy efficiency, and expand the scope of their use.

Author Biography

Игорь Владимирович Криштоп, Sumy State University 2rd Rimsky-Korsakov st, Sumy, Ukraine, 40007

graduate student

The department of Applied fluid mechanics

References

  1. Egger, Е. (1976). Verstoppingsvrije wervelwaaierpompen. Klaarmeester, 11 (2), 2.
  2. German, V. F., Kovalev, I. A., Kotenko, A. I.; Gusaka, A. G. (Ed.) (2013). Svobodnovihrevye nasosy [Torque flow pumps]. Sumy: Sumy State University, 159.
  3. Korbutovskiy, A. A. (1977). Vliyanie geometrii otvoda na rabochie parametry svobodnovihrevogo nasosa [Influence of geometry outlet on works options torque flow pump]. VNIIGidromash, 40–52.
  4. Sha, Y., Li, J., Liu, X., Hou, L., Cheng, F. (2009). Self-priming Vortex Pump Variable Speed Performance and Internal Flow. Transactions of the Chinese Society for Agricultural Machinery, 12.
  5. Shi, W., Dong, Y., Ma, X., Sha, Y., Kong, F. (2005). Numerical simulation of the effect of channel section shape on the inner flowing of vortex pump. Transactions of The Chinese Society of Agricultural Engineering, 03.
  6. Yuan, D.-Q., Wang, G.-J., Cheng, X.-Y., Zhang, X.-C., Zyfng, X.-W. (2008). Research status and prospect of vortex pump. Drainage and Irrigation Machinery, 06.
  7. Steinmann, A., Wurm, H., Otto, A. (2009). Numerical and experimental investigations of the unsteady cavitating flow in a vortex pump. ICHD, 21 (2), 299–300.
  8. WEMCO Pumps and systems (2009). Available at: http://etec-sales.com/pdf/WEMCOModelCTorqueFlowPumps.pdf
  9. Grabow, G. (1970). Einsatz von Friestrompumpen zur Forderung abrasive Medien. Pumpen and Verdichter- Informationen, 1, 53–55.
  10. Kapelyush, A. N. (1965). Issledovanie rabochego processa nasosov svobodno- vihrevogo tipa s pomoshch'yu skorostnoj kinos`emki [Investigation of workflow pumps free-vortex type using high-speed cinematography]. CNIITE'I, 11, 35–37.
  11. German, V. F. (1994). Issledovanie struktury potoka v svobodnovihrevom nasose [Investigation of flow structure in torque flow pump]. Kiev, ISIO, 67–81.
  12. Evtushenko, A. A. (2013). Razvitie teorii rabochego processa, praktiki konstruirovaniya i primeneniya dinamicheskih nasosov [The development of the theory of workflow practices of design and application of dynamic pumps]. monografiya. Sumy: Sumskii gosudarstvennyi universitet, 515.
  13. Lomakin, A. A. (1966). Centrobezhnye i osevye nasosy [Centrifugal and axial-flow pumps]. Moscow, Mashinbuilding, 364.
  14. Kryshtop, I. V., German, V. F., Gusak, A. G., Lugovaya, S. O. (2013). Torque flow pumps. Patent of Ukraine for useful model. F04D 7/04, № 84940, declared 01.04.2013; published 11.11.2013, № 21.
  15. ANSYS CFX 10.0 SolverModels. Release 10.0 (2008). Available at: http://ansys.com
  16. Krishtop, I., German, V., Gusak, O., Lugova, S., Kochevsky, A. (2014). Numerical Approach for Simulation of Fluid Flow in Torque Flow Pumps. Applied Mechanics and Materials, 630, 43–51. doi: 10.4028/www.scientific.net/amm.630.43
  17. GOST 6134-2007 Nasosy dinamicheskie. Metody ispytanii. [GOST 6134-2007 Dynamic pumps. Methods of tests] (2007). Vved. 2008-06-01, 100.
  18. German, V. F. (1984). Sozdanie i issledovanie stochnomassnyh svobodnovihrevyh nasosov povyshennoj e'konomichnosti [Establishment and Study torque flow pump high efficiency)] Sumy, 154.

Published

2015-04-21

How to Cite

Криштоп, И. В. (2015). Creating the flowing part of the high energy-efficiency torque flow pump. Eastern-European Journal of Enterprise Technologies, 2(7(74), 31–37. https://doi.org/10.15587/1729-4061.2015.39934

Issue

Section

Applied mechanics