Using stable distribution laws during evaluation of signal processing efficiency in optoelectronic systems

Authors

  • Татьяна Александровна Стрелкова Kharkiv National University of Radio Electronics Lenina 16, Kharkov, 61166, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2015.39950

Keywords:

optoelectronic systems, Poisson model of signals, signal fluctuations, Gaussian and non-Gaussian statistics, generalized limit theorems

Abstract

The changes in the statistical properties of the output signals of the optoelectronic systems with limited dynamic range when forming spatial-temporal distribution of optical radiation in the photodetector plane were analyzed. It is shown that selecting statistical models based on the central or generalized limit theorems requires considering the system operation conditions and spatial-energy characteristics of signals. Studies of the asymptotic behavior of tails of the distribution densities of the output signals  have shown the possibility of using stable distribution laws for describing the signals in the optoelectronic systems. ustainable distribution laws for describing the signals in optoelectronic systems. Comparative analysis of the system detection errors, depending on the selected statistical model of output signals has shown that using stable laws is essential in evaluating the signal processing efficiency. Improving processing algorithms in optoelectronic systems taking into account a statistical model of the output signals based on stable laws allows to avoid detection errors.

Author Biography

Татьяна Александровна Стрелкова, Kharkiv National University of Radio Electronics Lenina 16, Kharkov, 61166

Department of bases of the radio engineering

References

  1. Strelkova, A. I. (Ed.) (2010). Opticheskaja lokacija. Teoreticheskie osnovy priema i obrabotki opticheskih signalov. Kharkov.: Apostrof, 312.
  2. Mosjagin, G. M., Nemtinov, V. B., Lebedev, E. N. (1990). Teorija optiko-jelektronnyh sistem. Moscow, 432.
  3. Koks, D., Smit, V. (1967). Teorija vosstanovlenija. Moscow, 300.
  4. Lytjuga, A. P. (2009). Matematicheskaja model' signalov v televizionnyh sistemah pri nabljudenii nizkoorbital'nyh kosmicheskih ob’ektov v dnevnoe vremja. Zb. nauk. prac' Harkіvs'kogo unіversitetu Povіtrjanih Sil., 4 (22), 41–46.
  5. Fedoseev, V. I. (2011). Priem prostranstvenno-vremennyh signalov v optiko-jelektronnyh sistemah (puassonovskaja model'). Sp-b.: Universitetskaja kniga, 232.
  6. Gal'jardi, R., Karp, Sh. (1978). Opticheskaja svjaz'. Moscow: Svjaz', 424.
  7. Yang, F., Lu, Y. M., Sbaiz, L., VetteBits, M. (2012). From Photons. Oversampled Image Acquistion Using Binary Poisson Statistics. IEEE Transactions on image processing, 21 (4), 1421–1436. doi: 10.1109/tip.2011.2179306
  8. Berezin, V. V., Cybulin, A. K. (2008). Obnaruzhenie i ocenivanie koordinat izobrazhenij tochechnyh ob’ektov v zadachah astronavigacii i adaptivnoj optiki. Vestkik TOGU, 1 (8), 11–20.
  9. Nikitin, V. M., Fomin, V. N., Nikolaev, A. I., Borisenkov, I. L. (2008). Adaptivnaja pomehozashhita optiko-jelektronnyh informacionnyh sistem. Belgorod, 196.
  10. Strelkov, A., Zhilin, Ye., Lytyuga, A., Lisovenko, S. (2007). Signal Detection in Techical Vision Systems. Telecommunications and Radio Engineering, 66 (4), 283–293. doi: 10.1615/telecomradeng.v66.i4.10
  11. Bol'shakov, I. A., Rakoshic, V. S. (1978). Prikladnaja teorija sluchajnyh potoko. Moscow, 248.
  12. Belousov, Ju. I., Ivanov, D. V. (2008). Uchet harakteristik fluktuacij fonovogo izluchenija prigorizontnoj oblasti morja v algoritmah obrabotki signalov infrakrasnyh priborov. Izv. Vuzov. Priborostroenie, 52 (8), 43–49.
  13. Glauber, R. (1966). Opticheskaja kogerentnosti i statistika fotonov. Moscow: Nauka, 452.
  14. Sheluhin, O. I. (1998). Negaussovkie processy v radiotehnike. Moscow: Radio i svz', 310.
  15. Sibatov, R. T., Uchajkin, V. V. (2007). Drobko-differencial'naja kinetika perenosa zarjada v neuporjadochnyh poluprovodnikah. Fizika i tehnika poluprovodnikov, 41 (3), 346–351.
  16. Harvey, J. E., Choi, N., Krywonos, A., Peterson, G., Bruner, M. (2010). Image degradation due to scattering effects in two-mirror telescopes. Optical Engineering, 49 (6), 063202. doi: 10.1117/1.3454382
  17. Sabathil, M. (2004). Opto-electronic and quantum transport properties of semiconductor nanostructures. Vol. 67 of Selected Topics of Semiconductor Physics and Technology (Verein zur Förderung des Walter Schottky Instituts, Garching, 2004).
  18. Zolotarev, V. M. (1984). Ustojchivye zakony i ih primenenie. Moscow, 66.
  19. Levi, P. (1972). Stohasticheskie processy i brounovskoe dvizhenii. Moscow: Nauka, 375.
  20. Strelkova, T. A. Statistical properties of output signals in optical-television systems with limited dynamic range. Eastern-European Journal of Enterprise Technologies, 2/9 (68), 38–44. doi: 10.15587/1729-4061.2014.23361
  21. Strelkova, T. A. (2014). Studies on the Optical Fluxes Attenuation Process in Optical-electronic Systems. Semiconductor physics, quantum electronics & optoelectronics (SPQEO), 17 (4), 421–424.

Published

2015-04-20

How to Cite

Стрелкова, Т. А. (2015). Using stable distribution laws during evaluation of signal processing efficiency in optoelectronic systems. Eastern-European Journal of Enterprise Technologies, 2(9(74), 4–10. https://doi.org/10.15587/1729-4061.2015.39950

Issue

Section

Information and controlling system