Simulation of the chamfering process in dies

Authors

  • Сергей Викторович Шлык Kremenchuk Mykhailo Ostrohradskyi National University Pershotravneva, 20, Kremenchuk, Ukraine, 39600., Ukraine https://orcid.org/0000-0001-9422-1637
  • Владимир Леонидович Хорольский Kremenchuk Mykhailo Ostrohradskyi National University Pershotravneva, 20, Kremenchuk, Ukraine, 39600, Ukraine
  • Мария Игоревна Наумова National Technical University of Ukraine "Kyiv Polytechnic Institute" pr. Peremohy 37, Kiev, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-5836-3213

DOI:

https://doi.org/10.15587/1729-4061.2015.39999

Keywords:

cutting, die, stress-strain state, sliding punch, finite element method

Abstract

Bevel cutting in special dies on the pressing equipment is a progressive method of preparing edges for welding. The basic methods of bevel cutting and chamfering before welding were considered. The principal difference between the schemes is the original arrangement of workpieces, geometry of the cutting edge and motion direction of the punch.

The purpose of the study is to determine the stress-strain state of the system "cutter-workpiece" and select a rational cutting scheme in terms of the smallest loads, acting on the tool.

A comparison of the stress-strain state parameters under various chamfering schemes was performed by modeling using the software package ANSYS/LS-DYNA. For this, calculation schemes of the models were drawn, optimal parameters of the model parts and types of their contact interaction were determined. The result of the calculations is equivalent stress-strain distribution diagrams, graphics of the stress change on the cutting edge of the tool in time, and chamfering process visualization.

The results suggest that in terms of the stability of die tooling and quality of the design elements, cutting scheme with a punch, which performs translational motion simultaneously in two directions - horizontal and vertical is more rational. As a result of numerical simulation, it was found that the stresses on the cutting edge of the punch are reduced by more than 400 MPa and workpiece distortion and burr formation are eliminated when cutting using the proposed scheme.

The proposed cutting scheme was implemented in the design of the die, used in the production cycle of PJSC "Krukovka Carriages". Persistence of the most loaded nodes of the die is hundreds of times higher than previously used die tooling.

Author Biographies

Сергей Викторович Шлык, Kremenchuk Mykhailo Ostrohradskyi National University Pershotravneva, 20, Kremenchuk, Ukraine, 39600.

Associate professor, Candidate of technical science

Manufacturing Engineering Department

Владимир Леонидович Хорольский, Kremenchuk Mykhailo Ostrohradskyi National University Pershotravneva, 20, Kremenchuk, Ukraine, 39600

applicant

The Department of Transport Technology

Мария Игоревна Наумова, National Technical University of Ukraine "Kyiv Polytechnic Institute" pr. Peremohy 37, Kiev, Ukraine, 03056

Manufacturing Engineering Department

References

  1. Gyrdymov, G. P., Zilburg, L. I., Savcenko, I. D., Shalyshyn, V. D. (1990). Avtomatizatsiya tehnologicheskoy podgotovki zagotovitelnogo proizvodstva. Lviv: Mashinostroyeniye, 350.
  2. Dragobetskiy, V. V., Martsynyuk, O. B. (2005). Sopostavleniye energeticheskikh parametrov, protsessov termicheskoy i mekhanicheskoy rezki listovykh zagotovok. Visnyk KDPU, 30, 64–66.
  3. Dragobetskiy V. V., Martsynyuk O. B. Naumove Ye. A. Pirogov D. L. (2008). Visnyk Skhidnoukrayinskogo natsionalnogo universytetu imeni Volodymyra Dalya, 124,1, 85 – 88.
  4. Dragobetskiy, V. V., Martsynyuk, O. B. (2005). Novyye metody snizheniya raboty plasticheskoy deformatsii v operatsiyakh probivki i vyrubki. Visnyk KDPU, 30, 67–69.
  5. Cleary, P. W., Prakash, M., Das, R., Ha, J. (2012). Modelling of metal forging using SPH. Applied Mathematical Modelling, 36 (8), 3836–3855. doi: 10.1016/j.apm.2011.11.019
  6. Gerber, B., Yang, T. C. (2008). Making an impact. ANSYS Advantage, 2 (4), 40–42.
  7. Tynyanyi, A. F. (2004). Chislennoye modelirovaniye kontaktnoy zadachi v ramkakh kvazistaticheskogo uprugoplasticheskogo deformirovaniya v pakete AnSYS/LS-DYNA. Neftegazovoye delo, 1.
  8. Ilyushkin, M. V. (2012). Modelirovaniye protsessov obrabotki davleniyem v programme ANSYS/LS-DYNA: uchebno-metodicheskoye posobiye. Ulyanovsk: UlGU, 1, 91.
  9. Kryvoruchko, D. V., Zaloga, V. O., Korbach, V. G. (2009). Osnovy 3D-modelyuvannya protsesiv mekhanichnoyi obrobky metodom skinchenykh elementiv: navchalnyy posibnyk. Sumy: SumDU, 1, 208.
  10. MatWeb, Your Source for Materials Information. Available at: http://www.matweb.com/
  11. Jones, N., Griffin, R. N., Van Duzer, R. E. (1971). An experimental study into the dynamic plastic behaviour of wide beams and rectangular plates. International Journal of Mechanical Sciences, 13 (8), 721–735. doi: 10.1016/0020-7403(71)90072-5
  12. Jones, N., Soares, C. G. (1978). Higher modal dynamic plastic behavior of beams loaded impulsively. International Journal of Mechanical Sciences, 20 (3), 135–147. doi: 10.1016/0020-7403(78)90001-2
  13. Sturgess, C. E., Jones, M. (1971). Estimation of dynamic forces in high-speed compression using a free-flight impact forging device. International Journal of Mechanical Sciences, 13 (4), 309–322. doi: 10.1016/0020-7403(71)90056-7
  14. Jones, N., Marcilio, A. (2010). Post-Failure Behaviour of Impulsively Loaded Circular Plates. International Journal of Mechanical Sciences, 52 (5), 706–715. doi: 10.1016/j.ijmecsci.2009.11.014

Published

2015-04-21

How to Cite

Шлык, С. В., Хорольский, В. Л., & Наумова, М. И. (2015). Simulation of the chamfering process in dies. Eastern-European Journal of Enterprise Technologies, 2(7(74), 42–47. https://doi.org/10.15587/1729-4061.2015.39999

Issue

Section

Applied mechanics