A systematic approach to the synthesis of forecasting mathematical models for interrelated non-stationary time series

Authors

  • Виталий Николаевич Щелкалин Kharkіv National University of Radioelectronics 14, Lenina str., Kharkiv, Ukraine, 61166, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2015.40065

Keywords:

forecast, structural identification, the “Caterpillar”-SSA method, the method of group arguments accounting

Abstract

The study presents a schematic diagram suitable to describe almost any presently known combined, hybrid or decomposition model for forecasting time series. The diagram has laid the basis for the suggested methods of structural identification of sparse nonlinear models of interrelated non-stationary time series on the basis of “Caterpillar”-SSA methods, fast orthogonal search, a group accounting method, and SARIMA models.

Often a plurality of measured features is insufficient for building a model of satisfactory quality. It is necessary to extend the set of features by means of functional transformations of initial signs to decrease the uncertainty of the linear model. The study suggests that components of the “Caterpillar”-SSA method expansion, applied to the forecast and exogenous time series, should be viewed as generated variables.

In one of the suggested models, the method of fast orthogonal search is used for optimal thinning. In the other––the method of group arguments accounting is applied to thin the Kolmogorov-Gabor polynomial, which is built on the expansion components of the “Caterpillar”-SSA method that is applied to the forecast and exogenous time series. To correct the forecasts in both models, we used the seasonal model of auto-regression––the integrated moving average. The analysis and modeling of the considered method prove its effectiveness in the search of an optimal model structure, and the time for determining the model parameters considerably shortens alongside.

Therefore, a systematic approach is a set of methods and tools that facilitates overall researching of the properties and structure of the interrelated non-stationary time series and presents them as systems with all complex inter-element relationships.

Author Biography

Виталий Николаевич Щелкалин, Kharkіv National University of Radioelectronics 14, Lenina str., Kharkiv, Ukraine, 61166

Assistant of Department of Applied Mathematics

References

  1. Davydov, V. A., Davydov, A. V. (2010). Ochistka geofizicheskikh dannykh ot shumov s ispol'zovaniem preobrazovaniya Gil'berta-Khuanga: Elektronnoe nauchnoe izdanie "Aktual'nye innovatsionnye issledovaniya: nauka i praktika", 1.
  2. Gorodetsiy, A. E., Tarasova I. I. (2010). Nechetkoe matematicheskoe modelirovanie plokho formalizuemykh protsessov i sistem. SPb.: Izd-vo Politekhi, un-ta, 336.
  3. Strizhov, V. V., Krymova E. A. (2010). Metody vybora regressionnykh modeley. Moscow: Vychislitel'nyy tsentr im. A. A. Dorodnitsyna, 60.
  4. Stragovich, V. G. (1981). Adaptivnoe upravlenie. Moscow: Nauka, 381.
  5. Smolyak, S. A., Titarenko, B. I. (1980) Ustoychivye metody otsenivaniya, Moscow: Statistika, 208.
  6. Sedov, A. V. (2010). Modelirovanie ob"ektov s diskretno-raspre delennymi parametrami: dekompozitsionnyy podkhod. Moscow: Nauka, 438.
  7. Ginsberg, K. S. (2015). Problema strukturnoy identifikatsii dlya tseli proektirovaniya sistemy avtomaticheskogo upravleniya. Trudy X Mezhdunarodnoy konferentsii “Identifikatsiya sistem i zadachi upravleniya”. Moscow: Institut problem upravleniya im. V. A. Trapeznikova RAN, 43–80.
  8. Shchelkalin, V. N. (2014). “Caterpillar”-SSA and Box-Jenkins hybrid models and methods for time series forecasting. Eastern-European Journal of Enterprise Technologies, 5/4 (71), 43–62. doi: 10.15587/1729-4061.2014.28172
  9. Shchelkalin, V. N. (2014). Hybrid mathematical models and methods of time series forecasting taking into account external factors. Eastern-European Journal of Enterprise Technologies, 6/4 (72), 38–58. doi: 10.15587/1729-4061.2014.31729
  10. Shchelkalin, V. N. (2015). Hybrid mathematical models and methods for forecasting related nonstationary time series. Eastern-European Journal of Enterprise Technologies, 1/4 (73), 42–58. doi: 10.15587/1729-4061.2015.37317
  11. Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159–175. doi: 10.1016/s0925-2312(01)00702-0
  12. Jain, A., Kumar, A. (2006). An evaluation of artificial neural network technique for the determination of infiltration model parameters. Applied Soft Computing, 6 (3), 272–282. doi: 10.1016/j.asoc.2004.12.007
  13. Su, C. T., Tong, L. I., Leou, C. M. (1997). Combination of time series and neural network for reliability forecasting modeling. Journal of Chinese Industrial Engineering. 14, 419–429.
  14. Wang, W., Gelder, P. V., Vrijling, J. K. (2005). Improving daily stream flow forecasts by combining ARMA and ANN models. International Conference on Innovation Advances and Implementation of Flood Forecasting Technology.
  15. Onwubolu, G. C. (2008). Design of hybrid differential evolution and group method of data handling networks for modeling and prediction. Information Sciences, 178 (18), 3616–3634. doi: 10.1016/j.ins.2008.05.013
  16. Samsudin, R., Saad, P., Shabri, A. (2011). A hybrid GMDH and least squares support vector machines in time series forecasting. Neural Network World, 21 (3), 251–268. doi: 10.14311/nnw.2011.21.015
  17. Benn, D. V., Farmer, E. D. (1987). Sravnitel'nye modeli prognozirovaniya elektricheskoy nagruzki. Moscow: Energoatomizdat, 200.
  18. Tutubalin, V. N. (1992). Teoriya veroyatnostey i sluchaynykh protsessov. Moscow: Izd-vo MGU, 400.
  19. Prangishvili, I. V., Lototskiy, V. A., Ginsberg, K. S., Smolyaninov, V. V. (2004). Identifikatsiya sistem i zadachi upravle- niya: na puti k sovremennym sistemnym metodologiyam. Problemy upravleniya, 4, 2–15.
  20. Shchelkalin, V. N. (2013). Sistemnyy pokhod k sintezu klassa modeley dlya prognozirovaniya vzaimosvyazannykh nestatsionarnykh vremennykh ryadov. Materialy 15-y Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii SAIT. Kiev: UNK «IPSA» NTUU «KPI», 338–339.
  21. Gorelova, V. L., Mel'nikova, E. N. (1986). Osnovy prognozirovaniya sistem : ucheb. posob. dlya inzh.-ekon. spets. vuzov. Moscow: Vyssh. shk., 287.
  22. Grebenyuk, E. A., Logunov, M. G., Mamikonova, O. A., Pankova, L. A. (2006). Problemy sub"ektivnosti v reshenii zadach upravleniya i prognoza, svyazannykh s analizom vremennykh ryadov. Chelovecheskiy faktor v upravlenii, 156–178.
  23. Valenca, I., Ludermir, T., Valenca, M. (2010). Hybrid Systems to Select Variables for Time Series Forecasting Using MLP and Search Algorithms. Eleventh Brazilizn Symposium on Neural Networks, 247–252. doi: 10.1109/sbrn.2010.50
  24. Leehter, Y. (1999). Genetic algorithm based identification of nonlinear systems by sparse Volterra filters. IEEE Transactions on Signal Processing, 47 (12), 3433–3435. doi: 10.1109/78.806093
  25. Abbas, H. M., Bayoumi, M. M. (2006). Volterra-system identification using adaptive real-coded genetic algorithm. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 36 (4), 671–684. doi: 10.1109/tsmca.2005.853495
  26. Chen, S., Cowan, C. F. N., Grant, P. M. (1991). Orthogonal least squares learning algorithm for radial basis function networks. IEEE Transactions on Neural Networks, 2 (2), 302–309. doi: 10.1109/72.80341
  27. Ivakheneko, A. G., Ivakheneko, G. A. (1995). A review of problems solved by algorithms of the GMDH, Pattern Recognition and Image Analysis, 5 (4), 527–535.
  28. Guyon, I., Elisseeff, A. (2003). An introduction to variable and feature selection. J. Mach. Learn. Res., 3, 1157–1182.
  29. Blum, A. L., Langley, P. (1997). Selection of relevant features and examples in machine learning. Artificial Intelligence, 97 (1-2), 245–271. doi: 10.1016/s0004-3702(97)00063-5
  30. Guzairov, M. B., Il'yasov, B. G., Gerasimova, I. B. (2007). Sistemnyy podkhod k analizu slozhnykh sistem i protsessov na osnove triad. Problemy upravleniya, 5, 32–38.
  31. Korenberg, M. J. (1989). A robust orthogonal algorithm for system identification and time-series analysis. Biological Cybernetics, 60 (4), 267–276. doi: 10.1007/bf00204124
  32. Evdokimov, A. G., Tevyashev, A. D. (1980). Operativnoe upravlenie potokoraspredeleniem v inzhenernykh setyakh. Kh: Vishcha shkola, 144.

Published

2015-04-23

How to Cite

Щелкалин, В. Н. (2015). A systematic approach to the synthesis of forecasting mathematical models for interrelated non-stationary time series. Eastern-European Journal of Enterprise Technologies, 2(4(74), 21–35. https://doi.org/10.15587/1729-4061.2015.40065

Issue

Section

Mathematics and Cybernetics - applied aspects