An information model for evaluating, predicting and managing the qualityof industrial products

Authors

  • Наталья Анатольевна Зубрецкая Kyiv National University of Technologies and Design Str. Nemirovich-Danchenko, 2, Kyiv, 01011, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2015.40538

Keywords:

information model, quality management system, evaluation and prediction

Abstract

Structural formalization ofevaluating, predicting and managing products quality has resulted in a devised information model that is presented as a closed loop within the quality management system of information and material flows between a normative, industrial and information modules that interact on the basis of evaluation and prediction. The model allows establishing relations between structural elements of products quality and its formation. It is a basis for information structure modeling as well as simulation of information support for making managerial decisions while designing, manufacturing and using industrial products.

We have modeled structural and parametric evaluation and prediction of products quality as a complex of interrelated resources and procedures aimed at obtaining more specific information and preventing products inconsistencies due to technologies of intelligent data analysis.

Author Biography

Наталья Анатольевна Зубрецкая, Kyiv National University of Technologies and Design Str. Nemirovich-Danchenko, 2, Kyiv, 01011

Ph.D., professor

Department of Metrology, Standardization and Certification

References

  1. Fedin, S. S., Zubrec'ka, N. A. (2012). Ocenka i prognozirovanie kachestva promyshlennoj produkcii s ispol'zovaniem adaptivnyh sistem iskusstvennogo intellekta. Interservis, 206.
  2. Pedersen, T. B., Jensen, C. S., Dyreson, C. E. (2001). A foundation for capturing and querying complex multidimensional data. Information Systems, 26 (5), 383–423. doi: 10.1016/s0306-4379(01)00023-0
  3. Bouzeghoub, M., Kedad, Z. (2002). Quality in Data Warehousing in Information and Database Quality. Kluwer Academic Publisher, 163–198. doi: 10.1007/978-1-4615-0831-1_8
  4. Zubrec'ka, N. A. (2012). Konceptual'na model' sistemi іnformacіjnogo zabezpechennja jakostі promislovoї produkcії. Vіsnik KNUTD, 3, 68–74.
  5. Zubrec'ka, N. A. (2011). Funktsionalne modelyuvannya sistemi upravlinnya metrologichnoyu nadiynistyu zasobiv vimiryuvannya na etapah zhittevogo tsiklu. Vіsnik KNUTD, 5 (61), 38–44.
  6. Kettinger, W.J., Grover, V. (1995). Special Section: Toward a Theory of Business Process Change Management. Journal of Management Information Systems, 12 (1), 9‑30.
  7. Feldmann, C. G. (1998). The Practical Guide to Business Process Reengineering using IDEF0. Dorset House Publishing, New York, 230.
  8. Gilev, S. E., Gorban, A. N. (1996). On completness of the class of functions computable by neural networks. Proc. of the World Congress on Neural Networks (WCNN’96). San Diego, CA, Lawrens Erlbaum Accociates, 984–991.
  9. Hornik, K., Stinchcombe, M., White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2 (5), 359–366. doi: 10.1016/0893-6080(89)90020-8
  10. Sandler, U., Tsitolovsky, L. (2008). Neural Cell Behavior and Fuzzy Logic. Springer, 478.

Published

2015-04-20

How to Cite

Зубрецкая, Н. А. (2015). An information model for evaluating, predicting and managing the qualityof industrial products. Eastern-European Journal of Enterprise Technologies, 2(2(74), 16–20. https://doi.org/10.15587/1729-4061.2015.40538