FUZZY INVENTORY MODELS: REVIEW, PROBLEMS, DEVELOPMENT

Authors

  • Ольга В’ячеславівна Єгорова Черкаський державний технологічний університет бул. Шевченко, 460 , м. Черкаси, Україна, 18006, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2012.4227

Keywords:

control system quality, due manufacturing practices, pharmaceutical enterprise, pharmaceutical products.

Abstract

The analysis of fuzzy inventory model is executed. Their application singularity and disadvantages as elements of the theory of stockpile management have been defined.

Author Biography

Ольга В’ячеславівна Єгорова, Черкаський державний технологічний університет бул. Шевченко, 460 , м. Черкаси, Україна, 18006

Аспірант

Кафедра інформаційних технологій проектування

References

  1. Карагодова, О. О. Дослідження операцій [Текст] : навч. посібник / О. О. Карагодова, В. Р. Кігель, В. Д. Рожок. – К. : Центр учбової літератури, 2007. – 256 с.
  2. Jaber, M. Y. Inventory management: non-classical view [Text] / M. Y. Jaber. – Boca Raton : CRC Press Taylor Francis Group, 2009. – 228 p.
  3. Mula, J. Models for production planning under uncertainty: A review [Text]/ J. Mula, R. Poler, J. P. Garcia-Sabater, F. C. Lario // International Journal of Production Economics. – 2006. – Vol. 103. – Р. 271–285.
  4. Park, K. S. Fuzzy set theoretic interpretation of economic order quantity [Text] / K. S. Park // IEEE Transactions on, Systems, Man and Cybernetics. – 1987. – Vol. 17, № 6. – Р. 1082–1084.
  5. Vujosevic, M. EOQ formula when inventory cost is fuzzy [Text] / M. Vujosevic, D. Petrovic, R. Petrovic // International Journal of Production Economics. – 1996. – Vol. 45, № 1/3. – Р. 499–504.
  6. Lee, H.-M. Economic order quantity in fuzzy sense for inventory without backorder model [Text] / H.-M. Lee, J.-S. Yao // Fuzzy Sets and Systems. – 1999. – Vol. 105, № 1. – Р. 13–31.
  7. Yao, J.-S. Inventory without backorder with fuzzy total cost and fuzzy storing cost defuzzified by centroid and signed distance [Text] / J.-S. Yao, J. Chiang // European Journal of Operational Research. – 2003. – Vol. 148, № 2. – Р. 401–409.
  8. Wang, X. Fuzzy economic order quantity inventory models without backordering [Text] / X. Wang, W. Tang, R. Zhao // Tsinghua Science And Technology. – 2007. – Vol. 12, № 1. – Р. 91–96.
  9. Yao, J.-S. Fuzzy inventory with or without backorder for fuzzy order quantity with trapezoid fuzzy number [Text] / J.-S. Yao, H.-M. Lee // Fuzzy Sets and Systems. – 1999. – Vol. 105, № 3. – Р. 311–337.
  10. Wu, K. Fuzzy inventory with backorder for fuzzy order quantity and fuzzy shortage quantity [Text] / K. Wu, J.-S. Yao // European Journal of Operational Research. – 2003. – Vol. 150, № 2. – Р. 320–352.
  11. Hu, J. Fuzzy economic order quantity model with imperfect quality and service level [Text] / J. Hu, C. Guo, R. Xu, Y. Ji // Control and Decision Conference (CCDC), 26-28 May 2010, Xuzhou. – Singapore : IEEE Industrial Electronics (IE) Chapter, 2010. – Р. 4042–4047.
  12. Umap, H. P. Fuzzy EOQ model for deteriorating items with two warehouses [Text] / H. P. Umap // Journal of Statistics and Mathematics. – 2010. – Vol. 1, № 2. – Р. 01–06.
  13. De, S. K. An EOQ model with fuzzy inflation rate and fuzzy deterioration rate when a delay in payment is permissible [Text] / S. K. De, A. Goswami // International Journal of Systems Science. – 2006. – Vol. 37, № 5. – Р. 323–335.
  14. Shaha, N. H. EOQ in fuzzy environment and trade credit [Text] / N. H. Shaha, S. Pareekb, I. Sangalb // International Journal of Industrial Engineering Computations. – 2012. – Vol. 3. – Р. 133–144.
  15. Mondal, S. Multi-item fuzzy EOQ models using genetic algorithm [Text] / S. Mondal, M. Maiti // Computers & Industrial Engineering. – 2002. – Vol. 44, № 1. – Р. 105–117.
  16. Chakrabortty, S. Intuitionistic fuzzy optimization technique for the solution of an EOQ model [Text] / S. Chakrabortty, M. Pal, P. K. Nayak // Notes on Intuiоnistic Fuzzy Sets. – 2011. – Vol. 17, № 2. – Р. 52–64.
  17. Lee, H.-M. Economic production quantity for fuzzy demand quantity and fuzzy production quantity [Text] / H.-M. Lee, J.-S. Yao // European Journal of Operational Research. – 1998. – Vol. 109, № 1. – Р. 203–211.
  18. Hsieh, C. H. Optimization of fuzzy production inventory models [Text] / C. H. Hsieh //Information Sciences. – 2002. – Vol. 146, № 1/4. – Р. 29–40.
  19. Pappis, C. P. Lot size scheduling using fuzzy numbers [Text] / C. P. Pappis, N. I. Karacapilidis //Informational Transactions in Operational Research. – 1995. – Vol. 2, № 2. – Р. 205–212.
  20. Mandal, N. K. Multi-item imperfect production lot size model with hybrid number cost parameters [Text] / N. K. Mandal, T. K. Roy //Applied Mathematics and Computation. – 2006. – Vol. 82, № 2. – Р. 1219–1230.
  21. Panda, D. A single period inventory model with imperfect production and stochastic demand under chance and imprecise constraints [Text] / D. Panda, S. Kar, K. Maity, M. Maiti //European Journal of Operational Research. – 2008. – Vol. 188, № 1. – Р. 121–139.
  22. Wang, X. Fuzzy EPQ inventory models with backorder [Text] / X. Wang, W. Tang // Journal of Systems Science and Complexity. – 2009. – Vol. 22. – Р. 313–323.
  23. Sarkar, S. An EPQ model with two-component demand under fuzzy environment and Weibull distribution deterioration with shortages [Text] / S. Sarkar, T. Chakrabarti // Advances in Operations Research. – 2012. – Vol. 2012. – Р. 1–22.
  24. Chen, S. H. Fuzzy economic production quantity model for items with imperfect quality [Text] / S. H. Chen, C.-C. Wang, S. M. Chang // International Journal of Innovative Computing, Information and Control. – 2007. – Vol. 3, № 1. – Р. 85–95.
  25. Mahata, G. Ch. The optimal cycle time for EPQ inventory model of deteriorating items under trade credit financing in the fuzzy sense [Text] / G. Ch. Mahata, A. Goswami // International Journal of Operations Research. – 2010. – Vol. 7, № 1. – Р. 26–40.
  26. Halima, K. A. Fuzzy production planning models for an unreliable production system with fuzzy production rate and stochastic/ fuzzy demand rate [Text] / K. A. Halima, B. C. Giria, K. S. Chaudhuri // International Journal of Industrial Engineering Computations. – 2011. – Vol. 2. – Р. 179–192.
  27. Das, K. Buyer-seller fuzzy inventory model for a deteriorating item with discount [Text] / K. Das, T. K. Roy, M. Maiti // International Journal of Systems Science. – 2004. – Vol. 35, № 8. – Р. 457–466.
  28. Ouyang, L.-Y. Analysis of optimal vendor–buyer integrated inventory policy involving defective items [Text] / L.-Y. Ouyang, K.-S. Wu, C.-H. Ho // International Journal of Advanced Manufacturing Technology. – 2006. – Vol. 29, № 11/12. – Р. 1232–1245.
  29. Singh, Сh. Аn integrated supply chain model for the perishable items with fuzzy production rate and fuzzy demand rate [Text] / Ch. Singh, S. R. Singh // Yugoslav Journal of Operations Research. – 2011. – Vol. 21, № 1. – Р. 47–64.
  30. Sucky, E. A bargaining model with asymmetric information for a single suppliersingle buyer problem [Text] / E. Sucky // European Journal of Operational Research. – 2006. – Vol. 171, № 2. – Р. 516–535.
  31. Maghool, E. A fuzzy based mathematical model for vendor selection and procurement planning with multiple discounts in the presence of supply uncertainty [Text] / E. Maghool, J. Razmi // Journal of Industrial and Systems Engineering. – 2010. – Vol. 4, № 2. – Р. 125–151.
  32. Ritha, W. Optimization of fuzzy integrated vendor-buyer inventory models [Text] / W. Ritha, R. Kalaiarasi, Y. B. Jun // Annals of Fuzzy Mathematics and Informatics. – 2011. – Vol. 2, № 2. – Р. 239–257.
  33. Mahata, G. C. A joint economic-lot-size model for purchaser and vendor in fuzzy sense [Text] / G. C. Mahata, A. Goswami, D. K. Gupta // Computers and Mathematics with Applications. – 2005. – Vol. 50, № 10/20. – Р. 1767–1790.
  34. Yang, M. F. Optimal strategy for the integrated buyer-vendor model fuzzy annual demand and fuzzy adjustable production rate [Text] / M. F. Yang // Journal of Applied Sciences. – 2007. – Vol. 7, № 7. – Р. 1025–1029.
  35. Sinha, S. An application of fuzzy set theory for supply chain coordination [Text] / S. Sinha, S. P. Sarmah // International Journal of Management Science and Engineering Management. – 2008. – Vol. 3, № 1. – Р. 19–32.
  36. Gani, A. N. A Fuzzy approach on vendor managed inventory policy [Text] / A. N. Gani, S. Maheswari // International Journal of Contemporary Mathematical Sciences. – 2011. – Vol. 6, № 35. – Р. 1733–1747.
  37. Petrovic, D. Fuzzy models for the newsboy problem [Text] / D. Petrovic, R. Petrovic, M. Vujosevic // International Journal of Production Economics. – 1996. – Vol. 45, № 1/3. – Р. 435–441.
  38. Dey, O. A single-period inventory problem with resalable returns: A fuzzy stochastic approach [Text] / O. Dey, D. Chakraborty // International Journal of Mathematical, Physical and Engineering Sciences. – 2008. – Vol. 1, № 1. – Р. 8–15.
  39. Dutta, P. An inventory model for single-period products with reordering opportunities under fuzzy demand [Text] / P. Dutta, D. Chakraborty, A. R. Roy // Computers & Mathematics with Applications. – 2007. – Vol. 53, № 10. – Р. 1502–1517.
  40. Li, L. Fuzzy models for single-period inventory problem [Text] / L. Li, S. N. Kabadi, K. P. K. Nair // Fuzzy Sets and Systems. – 2002. – Vol. 132, № 3. – Р. 273–289.
  41. Nagare, M. On solving single-period inventory model under hybrid uncertainty [Text] / M. Nagare, P. Dutta // World Academy of Science, Engineering and Technology. – 2012. – Vol. 64. – Р. 933–938.
  42. Kao, C. A single period inventory model with fuzzy demand [Text] / C. Kao, W.-K. Hsu // Computers and Mathematics with Applications. – 2002. – Vol. 43, № 6/7. – Р. 841–848.
  43. Shao, Z. Fuzzy multiproduct constraint newsboy problem [Text] / Z. Shao, X. Ji // Applied Mathematics and Computation. – 2006. – Vol. 180, № 1. – Р. 7–15.
  44. Taleizadeh, А. А. A hybrid meta-heuristic method to optimize bi-objective single. period newsboy problem with fuzzy cost and incremental discount [Text] / А. А. Taleizadeh, S. T. A. Niaki // Journal of Industrial Engineering. – 2009. – Vol. 3. – Р. 1–13.
  45. Sommer, G. Fuzzy inventory scheduling [Text] // Applied systems and cyber neics : Рroceedings of the International Congress on applied systems research and cybernetics. Systems concepts, models and methodology. Vol. VI / edited : G. Lasker. – New York: Pergamon Press, 1981. – Р. 3052–3060.
  46. Kacprzyk, J. Long term inventory policy-making through fuzzy decision making [Text] / J. Kacprzyk, P. Staniewski // Fuzzy Sets and Systems. – 1982. – Vol. 8. – Р. 117–132.
  47. Mula, J. Material requirement planning with fuzzy constraints and fuzzy coefficients [Text] / J. Mula, R. Poler, J. P. Garcia- Sabater // Fuzzy Sets and Systems. – 2007. – Vol. 158, № 7. – P. 783–793.
  48. Lan, Y. An approximation-based approach for fuzzy multi-period production planning problem with credibility objective [Text] / Y. Lan, Y. Liu, G. Sun // Applied Mathematical Modelling. – 2010. – Vol. 34, № 11. – P. 3202–3215.
  49. Lee, Y. Y. A comparative study of three lot-sizing methods for the case of fuzzy demand [Text] / Y. Y. Lee, B. A. Kramer, C. L. Hwang // International Journal of Operations & Production Management. – 1991. – Vol. 11, № 7. – Р. 72–80.
  50. Behret, H. A multi-period newsvendor problem with pre-season extension under fuzzy demand [Text] / H. Behret, C. Kahraman // Journal of Business Economics and Management. – 2010. – Vol. 11, № 4. – Р. 613–629.
  51. Katagiri, H. Fuzzy inventory problems for perishable commodities [Text] / H. Katagiri, H. Ishii // European Journal of Operational Research. – 2002. – Vol. 138, № 3. – Р. 545–553.
  52. Lin, Y.-J. A periodic review inventory model involving fuzzy expected demand short and fuzzy backorder rate [Text] / Y.-J. Lin // Computers & Industrial Engineering. – 2008. – Vol. 54, № 3. – Р. 666–676.
  53. Sadi-Nezhada, S. Periodic and continuous inventory models in the presence of fuzzy costs [Text] / S. Sadi-Nezhada, Sh. M. Nahavandia, J. Nazemia // International Journal of Industrial Engineering Computations. – 2011. – Vol. 2. – Р. 167–178.
  54. Dey, J.-K. An interactive method for inventory control with fuzzy lead-time and dynamic demand [Text] / J.-K. Dey, S. Kar, M. Maiti // European Journal of Operational Research. – 2005. – Vol. 167, № 2. – Р. 381–397.
  55. Gen, M. An application of fuzzy set theory to inventory control models [Text] / M. Gen, Y. Tsujimura, D. Zheng // Compuers & Industrial Engineering. – 1997. – Vol. 33, № 3/4. – Р. 553–556.
  56. Pai, P.-F. Continuous review reorder point problems in a fuzzy environment [Text] / P.-F. Pai, M.-M. Hsu // International Journal of Advanced Manufacturing Technology. – 2003. – Vol. 22, № 5/6. – Р. 436–440.
  57. Chang, H.-C. Fuzzy mixture inventory model involving fuzzy random variable lead time demand and fuzzy total demand [Text] / H.-C. Chang, J.-S. Yao, L.-Y. Ouyang // European Journal of Operational Research. – 2006. – Vol. 169, № 1. – Р. 65–80.
  58. Tutuncu, G. Y. Continuous review inventory control in the presence of fuzzy costs [Text] / G. Y. Tutuncu, O. Akoz, A. Apaydin, D. Petrovic // International Journal of Production Economics. – 2008. – Vol. 113, № 2. – Р. 775–784.
  59. Vijayan, T. Inventory models with a mixture of backorders and lost sales under fuzzy cost [Text] / T. Vijayan, M. Kumaran // European Journal of Operational Research. – 2008. – Vol. 189, № 1. – Р. 105–119.
  60. Handfield, R. Inventory policies in a fuzzy uncertain supply chain environment [Text] / R. Handfield, D. Warsing, X. Wu // European Journal of Operational Research. – 2009. – Vol. 197, № 2. – Р. 609–619.
  61. Thangam, A. Modeling of a continuous review supply chain in an uncertain environment [Text] / A. Thangam, R. Uthayakumar // International Journal of Information and Management Sciences. – 2009. – Vol. 20, № 1. – Р. 137–159.
  62. Nayebi, M. A. Fuzzy-chance constrained multi-objective. Programming applications for inventory control model [Text] / M. A. Nayebi, M. Sharifi, M. R. Shahriari, O. Zarabadipour // Applied Mathematical Sciences. – 2012. – Vol. 6, № 5. – Р.209–228.
  63. Yao, J.-S. Models for a fuzzy inventory of two replaceable merchandises without backorder based on the signed distance of fuzzy sets [Text] / J.-S. Yao, L.-Y. Ouyang, H.-C. Chang // European Journal of Operational Research. – 2003. – Vol. 150, №3. – Р. 601–616.
  64. Mandal, N. K. A displayed inventory model with L-R fuzzy number [Text] / N. K. Mandal, T. K. Roy // Fuzzy Optimization and Decision Making. – 2006. – Vol. 5, № 3. – Р. 227–243.
  65. Maiti, M. K. Fuzzy inventory model with two warehouses under possibility measure on fuzzy goal [Text] / M. K. Maiti // European Journal of Operational Research. – 2008. – Vol. 188, № 3. – Р. 746–774.
  66. Kasthuri, R. Multi-item fuzzy inventory model involving three constraints: A Karush-Kuhn-Tucker conditions approach [Text] / R. Kasthuri, P. Vasanthi, S. Ranganayaki, C. V. Seshaiah // American Journal of Operations Research. – 2011. – Vol. 1. – Р. 155–159.

Published

2012-07-05

How to Cite

Єгорова, О. В. (2012). FUZZY INVENTORY MODELS: REVIEW, PROBLEMS, DEVELOPMENT. Eastern-European Journal of Enterprise Technologies, 4(3(58), 24–31. https://doi.org/10.15587/1729-4061.2012.4227

Issue

Section

Control systems