The current understanding of growing metallic filamentary crystals in an electric field

Authors

  • Сергей Робленович Артемьев National University of Civil Defense of Ukraine, str. Chernyshevsky, 94, Kharkov, Ukraine, 61000, Ukraine https://orcid.org/0000-0002-9086-2856

DOI:

https://doi.org/10.15587/1729-4061.2015.42399

Keywords:

filamentary crystals, growing methods, metal "whiskers", electrolysis process, passivating additives

Abstract

The existing ideas about one of the non-traditional methods of growing metallic filamentary crystals, such as growing in an electric field were considered in the paper. The role of impurities in the crystal growth process was investigated. Positive and negative sides of the electrolysis process during growing this group of crystals were critically considered. The experiments have shown that concentrated solutions of salts of several metals are the most suitable for growing filamentary crystals of metals and the presence of surface-active substances (SAS), having long molecules in the solution, is necessary for the nucleation of metallic filamentary crystals. The growth of metallic filamentary crystals is promoted by the presence of fine particles of graphite, glass and other mechanical impurities, and the presence of oxygen, on the contrary, retards it. During the formation of the whiskers of solder materials on thin-film electro-resistances when passing an electric current through them, whisker growth does not start immediately, but some time after the solder melts. The reason for the formation and growth of whiskers is the transferred-electron effect in a metal conductor, and the composition of the electrical resistance has no fundamental significance. The lack of oxygen in the electrolysis process is the basic condition for the formation of whiskers. Surface diffusion plays an important role in the formation of filamentary crystals. This research direction remains relevant at the present time. Today the country needs new structural materials that have valuable physicochemical properties. Microelectronics, medicine, defense issues, instrument-making industry, radiation safety, dosimetry, environmental protection - that's not all areas where grown filamentary crystals can be successfully used. Filamentary crystals have amazing properties, which in today's conditions deserve the close attention of our science. This, in turn, will help to more efficiently solve the issues of getting products that meet the requirements of environmental legislation, as well as human and environmental protection from anthropogenic factors.

Author Biography

Сергей Робленович Артемьев, National University of Civil Defense of Ukraine, str. Chernyshevsky, 94, Kharkov, Ukraine, 61000

Candidate of Technical Sciences, Associate Professor

Department of Occupational Safety and technogenic and ecological security 

References

  1. Berezhkova, G. V. (1969). Nitevidnye kristally. Moscow: Gosizdat, 158.
  2. Surkin, V. G. (1989). Materialy bydychego. О nitevidnyx kristallax metallov. Moscow: Gosizdat, 92.
  3. Belozerskiy, N. А. (1958). Karbonily metallov. Moscow. Мetallyrgpodat, 373.
  4. Shishelova, T. I., Stepanova, N. E., Plynskaja, D. A., Beljaeva, M. A. (2009). Nitevidnye kristally. Uspehi sovremennogo estestvoznanija, 8, 12–13.
  5. Nitevidnye kristally (2007). Issledovanija i razrabotki po prioritetnomu napravleniju razvitija nauki, tehnologij i tehniki. Industrija nanosistem i materialy.– Moskva. FGU «Rossijskij nauchnyj centr «Kurchatovskij institut».
  6. Nomeri, Mohamed Abass Hadija (2011). Poluchenie i issledovanie opticheskih svojstv poluprovodnikovyh oksidov ZnO2 i Zn2O3. Voronezh, 128.
  7. Rjabcev, S. V., Hadija, N. M. A., Chernyshov, F. M., Rjabcev, S. V., Domashevskaja, Je. P. (2009). Osobennosti opticheskih spektrov nitevidnyh nanokristallov SnO2. Nelinejnye processy i problemy samoorganizacii v sovremennom materialovedenii (industrija nanosistem i materialy). Voronezh, 308–311.
  8. Domashevskaja, Je. P., Hadija, N. M. A., Seredin, P. V., Rjabcev, S. V. (2008). Morfologicheskie, strukturnye i opticheskie issledovanija nanovolokon SnO2, sintezirovannyh iz poroshka SnO. Fagran – 2008: Fiziko-himicheskie processy v kondensirovannom sostojanii i na mezhfaznyh granicah. Voronezh, 367–371.
  9. Givargizov, Е. I. (1981). Teoriua rosta i metodu vurachuvaniya kristallov. Moscow: Izd. «Мir», 220.
  10. Nitevidnye kristally i neferromagnitnye plenku (1970). Мaterialy konferencii. Voronezh: VPI, 287.
  11. Nitevidnye kristally (1970). Мaterialy konferencii. Voronezh: VPI, 466.
  12. Nitevidnye kristally dlya novoy texniki (1975). Мaterialy konferencii. Voronezh: VPI, 300.
  13. Nitevidnye kristally dlya novoy texniki (1970). Мaterialy konferencii. Voronezh: VPI, 271.
  14. Gorbynova, К. М., Zykovа, А. I. (1949). Rost nitevidnyx kristallov. ZhFХ, 23, 695.
  15. Gorbynova, К. М., Dankov, P. D. (1949). Rost nitevidnyx kristallov. ZhFХ, 23, 616.
  16. Gorbynova, К. М. (1957). Rost kristallov. izd. АN SSSR, 1, 48.
  17. Van der Meulen, P. A., Lindstrom, H. V. (1956). A Study of Whisker Formation in the Electrodeposition of Copper. Journal of The Electrochemical Society, 103 (7), 390. doi: 10.1149/1.2430360
  18. Ovenston, T. C. J. J., Parker, C. A., Robinson, A. E. (1957). Filamentary Growths on Copper Cathodes. Journal of The Electrochemical Society, 104 (10), 607. doi: 10.1149/1.2428425
  19. Price, P. B., Vermilyea, D. A., Webb, M. W. (1958). On the growth and properties of electrolytic whiskers. Acta Metallurgica, 6 (8), 524–531. doi: 10.1016/0001-6160(58)90167-6
  20. Graf, L. Z., Morgenstern, W. Z. (1955), Naturforsh, 10a, 345.
  21. Berry, R. W. (1966). Growth of whisker crystals and related morphologies by electrotransport. Applied Physics Letters, 9 (7), 263. doi: 10.1063/1.1754742
  22. Bacon, R., Bowman, J. C. (1957). Bull. Amer. Phys. Soc., 11 (2), 131.
  23. Bacon, R. J., Bowman, J. C. (1957). Appl. Phys., 28, 826.
  24. Bacon, R. (1958). Bull. Amer. Phys. Soc., 3, 108.
  25. Bacon, R. (1959). Growth and Perfection of Crystals. N. Y. John Willey, 197.
  26. Bacon, R. (1960). Growth, Structure, and Properties of Graphite Whiskers. Journal of Applied Physics, 31 (2), 283. doi: 10.1063/1.1735559
  27. Yada, K. (1967). Study of chrysotile asbestos by a high resolution electron microscope. Acta crystallorg, 23 (5), 704–707. doi: 10.1107/s0365110x67003524
  28. Mazur, J., Rafalowich, J. (1961). Brit. J. Apple. Phys., 12, 569.
  29. Hoffmann, T. J., Mazur, J., Rafalowich, J., Nikliborc, J. (1961). Brit. J. Apple. Phys., 12, 342.
  30. Hoffmann, T. J., Mazur, J., Rafalowich, J., Nikliborc, J. (1961). Brit. J. Apple. Phys., 12, 635.
  31. Gomer, R. (1957). Field Emission from Mercury Whiskers. The Journal of Chemical Physics, 26 (5), 1333. doi: 10.1063/1.1743515
  32. Gomer, R. (1958). Surface Diffusion of CO on W. The Journal of Chemical Physics, 28 (1), 168. doi: 10.1063/1.1744064
  33. Gomer, R. (1959). Growth and Perfection of Crystals. N. Y. John Willey, 126.
  34. Gomer, R. J. (1963). Comments on ``Growth of Crystal Whiskers'' by Blakely and Jackson. The Journal of Chemical Physics, 38 (1), 273. doi: 10.1063/1.1733479
  35. Melmed, A. J., Gomer, R. (1959). Field Emission from Metal Whiskers. The Journal of Chemical Physics, 30 (2), 586–587. doi: 10.1063/1.1729993
  36. Melmed, A. J., Hayward, D. O. (1959). On the Occurrence of Fivefold Rotational Symmetry in Metal Whiskers. The Journal of Chemical Physics, 31 (2), 545. doi: 10.1063/1.1730394
  37. Melmed, A. J., Gomer, R. (1961). Field Emission from Whiskers. The Journal of Chemical Physics, 34 (5), 1802. doi: 10.1063/1.1701081
  38. Melmed, A. J. (1962). Electrical Measurement of Whisker Field-Emission Characteristics. The Journal of Chemical Physics, 36 (4), 1101. doi: 10.1063/1.1732663
  39. Melmed, A. J. (1963). Apple. Phys., 34, 3225.
  40. Melmed, A. J. (1963). Field-Electron and Field-Ion Emission from Single Vapor-Grown Whiskers. The Journal of Chemical Physics, 38 (3), 607. doi: 10.1063/1.1733713
  41. Lewowski, T. Z. (1960). Naturforch, 15a, 89.

Published

2015-06-17

How to Cite

Артемьев, С. Р. (2015). The current understanding of growing metallic filamentary crystals in an electric field. Eastern-European Journal of Enterprise Technologies, 3(1(75), 21–27. https://doi.org/10.15587/1729-4061.2015.42399

Issue

Section

Mechanical engineering technology