Devising the law of automatic compensation for a failed engine in a going around plane

Authors

DOI:

https://doi.org/10.15587/1729-4061.2015.43110

Keywords:

go-around, engine failure, full (complete) gradient, rudder

Abstract

The paper presents a numerical simulation of an automatic go-around of an aircraft with a failed engine. When an engine fails, it reveals additional resistance force as well as entails unbalanced forces and moments at a roll and a yaw rotation. To quantify an automatic go-around of an aircraft with a failed engine, the value of the steady climb full gradient should not be lower than its minimum set point. Thus, for a four-engine airplane the minimum set value of the full steady climb makes up 2.7 %.

An automatic go-around of an aircraft with a failed engine (with no regard to the failure compensation) is characterized by a decreased full gradient of the steady climb and the current gradient as well as a “sluggish” acceleration of the aircraft speed and climb.

The synthesis of the law of automatic compensation for a failed engine is based on the principle of direct measurement of disturbances and their application in a loop control of the rudder. The measured disturbances typical of an engine failure include deviation of the set rotor speed of low-pressure fans for the left and right engines as well as a lateral acceleration in the direction of the failed engine.

The devised law of automatic compensation for a failed engine in the rudder channel allows to increase the supply of a complete steady gradient of an aircraft climb by 2.0-3.0 % and improve the dynamics of velocity acceleration and the aircraft climb.

Author Biographies

Сергей Викторович Морозов

Candidate of technical science

Reserve officer 

Вадим Сергеевич Морозов, National aviation university Komarova Avenue, Kyiv, Ukraine, 03058

graduate student

The department of computer information technologies

References

  1. Kotik, М. G. (1984). Dinamika vzljota i posadki samoljotov. Мoscow: Mashinostroenie, 256.
  2. Advisory Circular. Criteria for approval of category III weather minima for take off, landing, and rollout (1999). AC120-28D. FAA, 91.
  3. Certification Specifications for All Weather Operations CS-AWO (2003). EASA, 67.
  4. Morozov, S. V. (2008). Avtomatichnij vuhid litaka na druge kolo za kriteriem energetuchnogo shvidkisnogo pidjomy. Naukovi visti NTUU “КPІ”, 2 (58), 68–74.
  5. Morozov, V. S. (2015). Zakon upravlinnja najvnoju energieju povitrjanogo sudna pid chas avtomatichnogo vuhodu na druge kolo. Problemu informatizacii i upravlenya: sb. Nauchnuh rabot, 2 (50), 60–72.
  6. Rukovodstvo po sertifikacii samoljotov transportnoj kategorii v chasti sredstv avtomaticheskogo upravlenja na sootvetstvie trebovanijam AP-25 (1991). Part 1. Moscow: LII im. Gromova, 25.
  7. Pahnenko, V. L., Trjuhan, О. N., Savchenkov YU. G. (1992). Osobenosti practicheskoj aerodinamiki samoleta AN-124. К.: KVVAIU, 112.
  8. Ephremov, A. V., Zaharchenko V. F., Ovcherenko, V. N. et. al.; Bjushgens, G. S. (Ed.) (2011). Dinamika poleta. Мoscow: Mashinostroenie, 776.
  9. Morozov, V. S. (2015). Analiticheskoe konstruirovanie reguljatora verticalnoi skorosti dlja obespechenia avtomaticheskogo upravlenija uhodom na vtoroj krug pasagirskogo samoljota. Problemu informatizacii i upravlenya: sb. Nauchnuh rabot, 1 (49), 70–77.
  10. Borisenko, Yu. G., Kuznecov, A. G. (2010). Osnovnue principu avtomatizacii upravlenija tjagoi sovremennuh samoljotov. Trydu Moskovskogo instituta elektromehaniki i avtomatiki. Navigazia i upravlenie letatelnumi apparatami, 2, 10–16.

Published

2015-06-23

How to Cite

Морозов, С. В., & Морозов, В. С. (2015). Devising the law of automatic compensation for a failed engine in a going around plane. Eastern-European Journal of Enterprise Technologies, 3(9(75), 45–52. https://doi.org/10.15587/1729-4061.2015.43110

Issue

Section

Information and controlling system