Research of enhanced base strain on landslide-prone slopes under anthropogenic impact

Authors

  • Єдуард Юрійович Петренко Kyiv National University Construction and Architecture Povitroflotskiy avenue, 31, Kyiv, Ukraine, 03680, Ukraine https://orcid.org/0000-0002-9792-4757
  • Махді Гараханлу Мохаммад Kyiv National University Construction and Architecture Povitroflotskiy avenue, 31, Kyiv, Ukraine, 03680, Ukraine https://orcid.org/0000-0002-4789-3470

DOI:

https://doi.org/10.15587/1729-4061.2015.43727

Keywords:

slope, landslide-prone area, finite element method, retaining wall, base

Abstract

Design and construction in landslide-prone areas are associated with both ensuring the soil mass stability  and evaluating possible appearance and enhancement of the natural and anthropogenic factors. Finite element method is the most rational solution for this class of problems. Further development of computational methods is associated with the expansion of using the mathematical analogs of ground models based on numerical calculation methods. For such problems, a model that allows to consider natural conditions and variable anthropogenic factors in landslide-prone areas, taking into account the plastic deformation of soils within the "slope-retaining structure-building" system was proposed. The paper deals with the stress-strain state of the landslide-prone slope and influence of anthropogenic factors on the process. The simulation was performed using the SATER.SOIL software package.

The results have allowed to determine the areas of plastic deformation of the soil, which allowed to estimate the degree of approximation to the ultimate stress state along the slope at all stages of loading, taking into account natural and anthropogenic  factors. The change in the stress-strain state of the soil mass using various engineering protection structures and their effectiveness within the "slope-retaining structure-building" system was considered.

Author Biographies

Єдуард Юрійович Петренко, Kyiv National University Construction and Architecture Povitroflotskiy avenue, 31, Kyiv, Ukraine, 03680

Associate professor, PhD

Base and foundation department

Махді Гараханлу Мохаммад, Kyiv National University Construction and Architecture Povitroflotskiy avenue, 31, Kyiv, Ukraine, 03680

Graduate student

Base and foundation department

References

  1. DBN V.1.1-3-1997. Inzhenernyy zakhyst terytoriy, budynkiv i sporud vid zsuviv ta obvaliv. Osnovni polozhennya (1998). Kiev: Derzhavnyy komitet budivnytstva, arkhitektury ta zhytlovoyi polityky Ukrayiny, 41.
  2. Byleush, A. Y. (2009). Opolzny y protyvoopolznevie meropryyatyya. Kyev: Naukova dumka, 560.
  3. Lombardo, V. N., Hroshev, M. E., Olympyev, D. Y. (1986). Uchet napryazhenno-deformyrovannoho sostoyanyya pry raschetakh ustoychyvosty otkosov hruntovikh plotyn. Hydrotekhnycheskoe stroytel'stvo, 7, 16–18.
  4. Bate, K., Vylson, E. (1982). Chyslennie metody analyza y metod konechnykh elementov. Moscow: Stroyyzdat, 448.
  5. Sakharov, A. S., Kyslookyy, V. N., Kyrychevskyy, V. V. et. al. (1982). Metod konechnykh elementov v mekhanyke tverdykh tel. Kyev: Vyshcha shkola, 479.
  6. Cheng, Y. M., Li, L., Chi, S. C. (2007). Studies on six heuristic global optimization methods in the location of critical slip surface for soil slopes. Comput Geotech, 34, 462–484.
  7. Lane, P. A., Griffiths, D. V. (1999). Slope stability analysis by finite elements. Géotechnique, 49 (3), 387–403. doi: 10.1680/geot.1999.49.3.387
  8. Gasmo, J. M., Rahardjo, H., Leong, E. C. (2000). Infiltration effects on stability of a residual soil slope. Computers and Geotechnics, 26 (2), 145–165. doi: 10.1016/s0266-352x(99)00035-x
  9. Petrenko, E. Yu., Solodey, I. I., Makhdi Harakhanlu, M. (2014). Matematychna model' eroziyi v zoni hlobal'noyi tekhnohennoyi diyi. Osnovy i fundamenty: Mizhvidomchyy nauk.-tekhn. zbirnyk, 35, 125–139.
  10. Petrenko, E. Yu., Solodey, I. I. (2005). Chysel'ni doslidzhennya NDS skhylu ta proektuvannya zakhysnykh sporud. Osnovy i fundamenty: Mizhvidomchyy nauk.-tekhn. zbirnyk, 29, 109–116.
  11. Chen, J. (2004). Slope stability analysis using rigid element. Hong Kong Polytechnic University.
  12. Duncan, J. M. (1996). State of the Art: Limit Equilibrium and Finite-Element Analysis of Slopes. Journal of Geotechnical Engineering, 122 (7), 577–596. doi: 10.1061/(asce)0733-9410(1996)122:7(577)
  13. Song, E. (1997). Finite element analysis of safety factor for soil structure. Chinese J Geotech Eng., 19 (2), 1–7.
  14. Steele, D. P., MacNeil, D. J., Barker, D., McMahon, W. (2004). The use of live willow poles for stabilising highway slopes. TRL Report TRL619. Crowthorne: TRL Limited.
  15. Tiande, M., Chongwu, M., Shengzhi, W. (1999). Evolution Model of Progressive Failure of Landslides. Journal of Geotechnical and Geoenvironmental Engineering, 125 (10), 827–831. doi: 10.1061/(asce)1090-0241(1999)125:10(827)

Published

2015-06-24

How to Cite

Петренко, Є. Ю., & Мохаммад, М. Г. (2015). Research of enhanced base strain on landslide-prone slopes under anthropogenic impact. Eastern-European Journal of Enterprise Technologies, 3(7(75), 14–22. https://doi.org/10.15587/1729-4061.2015.43727

Issue

Section

Applied mechanics