Development of a numerical model for gas-solid flow in the industrial cyclone-calciner furnace

Authors

DOI:

https://doi.org/10.15587/1729-4061.2015.44168

Keywords:

numerical simulation, cyclone-calciner furnace, particles distribution, gas-solids flow, particle residence time

Abstract

This work is focused on the numerical simulations of gas-solid flow in an industrial cyclone-calciner furnace. «ANSYS Fluent 15» software was used for numerical simulation. The computer model allows us to investigate modes of work with different fractional composition of material.

For different boundary conditions of inlet gas flow, the trajectory of the particles and residence time in the apparatus, as well as hydrodynamic flow structure were determines. In addition the influence of additional revolving flow in the furnace on a distribution of particles was investigated too. The simulation results show good agreement between predicted and experimental data. This means that the behaviour of complex furnace system can be predicted using the CFD.

The obtained results will be used in the future to optimize the design of the furnace and determination of optimal modes of operation.

Author Biographies

Roman Havryliv, National University "Lviv Polytechnic" st. S. Bandera, 12, Lviv, Ukraine, 79000

Candidate of technical science, Associate Professor

Department of Chemical Engineering

Institute of Chemistry and Chemical Technology

Vladimir Maystruk, National University "Lviv Polytechnic" st. S. Bandera, 12, Lviv, Ukraine, 79000

Candidate of technical science, Associate Professor

Department of Electronic Engineering

Institute of Engineering Mechanics and Transport

Valeria Biliak, National University "Lviv Polytechnic" st. S. Bandera, 12, Lviv, Ukraine, 79000

Student gr. Processes and equipment of chemical plants

Department of Chemical Engineering

Institute of Chemistry and Chemical Technology

References

  1. Bоyko, V. N., Fedorov, O. G., Fedorov, S. S., Foris, C .N. (2008) Energosberegauschaya tehnologiya utilizacii othodov izvestkovo-obgigovogo proizvodstva. 5-ya Mizdynarodnaya konferencia “Sotrudnechestvo dlya reshenia problemy othodov”, 94–97.
  2. Fedorkin, S. I., Lubomirskiy, N. V., Loktionova, T. A. (2006). Perspektivu razvitiya izvestkovoy promislenosty s sozdaniem novih tehnologiy polychenia iskystvennich stroitelnich materialov na osnove vozdyshnoy izvesti. Stroitelstvo i technogennaya bezopasnost, 17, 80–85.
  3. Bоyko, V. N. Ciklonnaya pech dlya proizvodstva poroshkoobraznoi izvesti A.S. 1502937 USSR, МКI4 F27 В15/00.
  4. Bоyko, V. N. (1988.) Sposob poluchenia izvesti v ciklonnoy pechi. A.S. 1446122 МКI С 04 В 2/02.
  5. Djulay, L. I. (1988) Ciklonnaya pech dlya proizvodstva izvesty. A.S. № 1608405. 5F 27 В 7/18.
  6. Маrtinenko, V. P., Grishin, A. V. (1993) Ciklonnaya pech dlya proizvodstva poroshkoobraznoy izvesti. A.S. 1795961, 6, 233.
  7. Ghasemia, N., Sohrabib, M., Soleymanic, Y. (2011). Residence Time Distribution in a Two Impinging Streams Cyclone Reactor: CFD Prediction and Experimental Validation. World Academy of Science, Engineering and Technology 6, 7–21.
  8. Fidaros, D. K., Baxevanou, C. A., Dritselis, C. D., Vlachos, N. S. (2007). Numerical modelling of flow and transport processes in a calciner for cement production. Powder Technology, 171 (2), 81–95. doi: 10.1016/j.powtec.2006.09.011
  9. Marsh, C. (2009). CFD Modelling of Alumina Calciner Furnaces. Seventh International Conference on CFD in the Minerals and Process Industries CSIRO. Melbourne, Australia.
  10. Mastorakos, E., Massias, A., Tsakiroglou, C. ., Goussis, D. ., Burganos, V., Payatakes, A. (1999). CFD predictions for cement kilns including flame modelling, heat transfer and clinker chemistry. Applied Mathematical Modelling, 23 (1), 55–76. doi: 10.1016/s0307-904x(98)10053-7
  11. Mikulčić, H., Vujanović, M., Fidaros, D. K., Priesching, P., Minić, I., Tatschl, R. et. al. (2012). The application of CFD modelling to support the reduction of CO2 emissions in cement industry. Energy, 45 (1), 464–473. doi: 10.1016/j.energy.2012.04.030
  12. Boyko, V. N., Fedorov, O. G. (2007). Raschet pechi ciklonnogo tipa dlya termoobrabotki melkodispersnich materialov Metalyrgicheskaya teplotechnika, 33–43.
  13. Boyko, V. N. (2004). Razrabotka rezimov obziga melkodispersnogo izvestnyaka v pechah ciklonnogo tipa. Меtalyrgichiskaya teplotehnika, 15–26.
  14. Boyko, V. N. (2006). Raschet rabochey kamery ciklonnogo dekarbonizatora dlya obgiga tonkodisperstnogo izvestnyaka. Меtalyrgichiskaya teplotehnika, 16–22.
  15. Luo, H. (2011). Modeling the Gas-Solid Flow in Calcining Furnace. The Journal of Computational Multiphase Flows, 3 (1), 1–12. doi: 10.1260/1757-482x.3.1.1
  16. Wei, R., Chen, H., Yan, J., Gao, J. (2010). Simulation on Pore Size Distribution of Calcined Product from Calcium-Based Sorbents. 2010 International Conference on Digital Manufacturing & Automation, 387–390. doi: 10.1109/icdma.2010.430
  17. Shih, T.-H., Liou, W. W., Shabbir, A., Yang, Z., Zhu, J. (1995). A new k-ϵ eddy viscosity model for high reynolds number turbulent flows. Computers & Fluids, 24 (3), 227–238. doi: 10.1016/0045-7930(94)00032-t
  18. Cundall, P. A., Strack, O. D. L. (1979). A discrete numerical model for granular assemblies. Géotechnique, 29 (1), 47–65. doi: 10.1680/geot.1979.29.1.47

Downloads

Published

2015-06-29

How to Cite

Havryliv, R., Maystruk, V., & Biliak, V. (2015). Development of a numerical model for gas-solid flow in the industrial cyclone-calciner furnace. Eastern-European Journal of Enterprise Technologies, 3(8(75), 14–21. https://doi.org/10.15587/1729-4061.2015.44168

Issue

Section

Energy-saving technologies and equipment