Influence of errors on the accuracy of the spatial monitoring results under redundant information

Authors

  • Юрій Владленович Кулявець Kharkiv National University of Construction and Architecture Ukraine, Kharkiv, 40 Sumskay vul., Ukraine
  • Олег Ігоревич Богатов Kharkiv National Automobile and Highway University 25 Petrovskogo str., Kharkiv, Ukraine, 61002, Ukraine
  • Олена Анатоліївна Єрмакова Kharkiv National Automobile and Highway University 25 Petrovskogo str., Kharkiv, Ukraine, 61002, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2015.44235

Keywords:

information integration, parameter measurement, independent measuring devices, estimate filtering, weight matrix

Abstract

The presence of information redundancy allows to obtain an overall estimate by various relatively simple measuring devices using minimally sufficient set of fundamental measurements. Herewith, estimated parameters tend to be related to the measured initial estimates of nonlinear functional relationships. Therefore, direct use of the maximum likelihood method leads to the necessity of solving systems of nonlinear equations. Applying the linearization method of nonlinear functional relationships allows to obtain optimal (in this case maximum likely) estimates of the final parameter and the correlation matrix of estimation errors in an explicit form. Herewith, solving the problem of optimal use of estimates of the same state vector obtained by different methods simultaneously, is reduced to a consistent application of the estimate filtering algorithm. However, the weight matrix, included in the expression for determining the overall estimate depends on the values of the measured parameter and is not always known a priori. Based on this, without dwelling on the possible ways of obtaining the weight matrix, the analysis of the influence of its determination accuracy on the overall estimate accuracy was performed. It is shown that the elements of the correlation error matrix of the overall parameter estimate depend not only on the accuracy of the initial estimates, obtained from different measuring devices simultaneously, but also on the estimation accuracy of the weight matrix, methods of its determination and the closure error of initial parameter estimates.

Author Biographies

Юрій Владленович Кулявець, Kharkiv National University of Construction and Architecture Ukraine, Kharkiv, 40 Sumskay vul.

PhD, Senior Lecturer

Department of Life Safety & Environmental Engineering

Олег Ігоревич Богатов, Kharkiv National Automobile and Highway University 25 Petrovskogo str., Kharkiv, Ukraine, 61002

PhD, Senior Lecturer

Department of Metrology and Life Safety

Олена Анатоліївна Єрмакова, Kharkiv National Automobile and Highway University 25 Petrovskogo str., Kharkiv, Ukraine, 61002

PhD, Senior Lecturer

Department of Engineering and Computer Graphics

References

  1. Monitoring of emergency situations [Monіtoring nadzvichajnikh situatsіj] (2005). Kharkiv.: ACDU, 530.
  2. Bessoniy, V. L. (2008). Using method of informational redundancy for guaranteeing reliability of results of emergency situations monitoring [Ispol'zovanie metoda informatsionnoj izbytochnosti dlya obespecheniya dostovernosti rezul'tatov monitoringa chrezvychajnykh situatsij]. Kharkiv: NUCDU, 8, 44‑51.
  3. Kondrashov, V. T. (2006). The theory of redundant measurements [Teoriya izbytochnykh izmerenij]. Komp'yuternі zasobi, MEREZHI that system, 5, 23‑33.
  4. Hrapov, F. I. (2010). On the question of the use of different types of redundancy for the assessment of measurement systems with hard to reach transducer during operation [K voprosu ispol'zovaniya razlichnykh vidov izbytochnosti dlya otsenki sostoyaniya izmeritel'nykh sistem s trudnodostupnymi pervichnymi izmeritel'nymi preobrazovatelyami v protsesse ehkspluatatsii]. Herald metrology, 3, 11‑15.
  5. Shearman, J. D., Manzhos, V. N. (1981). Theory and techniques of processing radar information on the background noise [Teorija i tehnika obrabotki radiolokacionnoj informacii na fone pomeh]. Moscow, USSR: Radio i Sviaz, 416.
  6. Motylev, K. I. (2011). Processing excessive trajectory information based on the correlation of measurement errors [Obrabotka izbytochnoj traektornoj informatsii s uchetom korrelyatsii oshibok izmerenij]. Automation, telemehanіka, phone reception: Zbіrnik Naukova Pratzen DonІZT, 27, 45‑49.
  7. Bystrov, V., Davydov, R., Lebedev, Ye., Maltsev, A. (1988). The influence of redundant measurements on evaluation of parameters [Vlijanie izbytochnyh izmerenij na ocenku parametrov]. Moscow, USSR: A. L. Mints RTI. academy of Sciences of the USSR, 20.
  8. Motylev, K. I. (2008). Treatment of excessive orbital information of measurement computer system [Obrabotka izbytochnoj traektornoj informatsii v izmeritel'no-vychislitel'nykh sistemakh ]. Automation. Automation. Electrical systems and systems: scientific and technical journal. Kherson, HNTU, 2 (22), 112‑116.
  9. Bondarenko, L. N. (2014). Analysis of test methods to improve measurement accuracy [Аnaliz testovykh metodov povysheniya tochnosti izmerenij]. Measurement. Monitoring. Management. Control, 1 (7), 15‑20.
  10. Tkachenko, V. N. (2013). Application redundancy input in defining the target coordinates passive multiposition complexes [Primenenie izbytochnosti vkhodnykh dannykh v zadache opredeleniya koordinat tseli passivnymi mnogopozitsionnymi kompleksami]. Nauka i tehnіka Povіtryanih Zbroynih Forces Forces of Ukraine, 4 (13), 64‑67.
  11. Sage, E., Mills, J., Levina, E. d. (1978). Estimation theory and its application in communication and management [Teorija ocenivanija i ee primenenie v svjazi i upravlenii]. Moscow, USSR: Sviaz, 496.
  12. Karavaev, V. V., Sazonov, V. V. (1987). Statistical theory of passive location [Statisticheskaja teorija passivnoj lokacii]. Moscow, USSR: Radio i Sviaz, 240.
  13. Khokhlov, M. V. (2008). The algorithm for determining the local topological redundancy telemetry measurements on hypergraph [Аlgoritm opredeleniya lokal'noj topologicheskoj izbytochnosti teleizmerenij na gipergrafe izmerenij]. Grid: management, competition, education: Sat. III international reports. scientific and practical. Conf. In 2 V. Yekaterinburg: Ural State Technical University, 1, 423‑427.
  14. Nagin, I. (2012). A aggregation algorithm NAP SRNS and road wheel speed sensors [Аlgoritm kompleksirovaniya NАP SRNS i avtomobil'nykh datchikov skorostej vrashheniya koles]. Radio engineering, 6, 126‑130.
  15. Shatila, A. J. (2008). Aggregation algorithm SRNS receiver and INS open circuit [Аlgoritm kompleksirovaniya priemnika SRNS i INS po razomknutoj skheme]. Radio engineering, 7, 19‑25.
  16. Surkov, V. O. (2013). The analysis of the navigation systems for moving ground targets and principles of their construction [Аnaliz sostava navigatsionnykh sistem dlya podvizhnykh nazemnykh ob"ektov i printsipov ikh postroeniya]. Engineering: Tradition and Innovation: Materials II Intern. scientific. Conf. Chelyabinsk: Two Komsomolets, 34‑37.
  17. Bobylev, A., Kruchinin, P. (2014). On the joint processing of readings inertial unit and video analytics systems [O sovmestnoj obrabotke pokazanij inertsial'nogo bloka i sistemy videoanaliza]. Physics and electronics in medicine and ecology. Proceedings of the 11th international conference FREME'2014 with elements of scientific youth school. Vol. 1. Vladimir Voronezh State University, 344‑346.
  18. Nikitin, O. R. (2011). Integration of these multi-channel monitoring of the Earth surface [Kompleksirovanie dannykh mnogokanal'nogo monitoringa zemnoj poverkhnosti ]. Methods and devices of information transmission and processing, 13, 68‑71.
  19. Alguliev, R. M. (2012). Integration measurements to identify the flight path of the aircraft aparata [Kompleksirovanie izmerenij dlya identifikatsii traektorii poleta letatel'nogo aparata]. Mechatronics, Automation, Control, 2 (131), 57‑60.
  20. Kulyavets, U. V., Bogatov, O. I., Ermakova, O. А. (2013). Combining redundant information for the purpose of spatial environmental monitoring. Eastern-European Journal of Enterprise Technologies, 6/9 (66), 36‑39. Available at: http://journals.uran.ua/eejet/article/view/18933/17043
  21. Tikhonov, V. I. (1982). Statistical radio engineering [Statisticheskaja radiotehnika]. Moscow, USSR: Radio i Sviaz.
  22. Mirsky, G. Ya. (1972). Apparatus determination of random processes properties [Apparaturnoe opredelenie harakteristik sluchajnyh processov]. Moscow, USSR: Energiya, 456.
  23. Aghajanova, P. A., Dulevich, V. E., Korostelyova, A. A. (1969). Space trajectory measurements. Radio engineering methods of measurement and mathematical data processing [Radiotehnicheskie metody izmerenij i matematicheskaja obrabotka dannyh]. Moscow, USSR: Sov. Radio, 504.
  24. Rao, S. R. (1968). Linear statistical methods and their application [Linejnye statisticheskie metody i ih primenenie]. Moscow, USSR: Nauka, 574.
  25. Mirsky, G. Ya. (1982). Features of stochastic relationship and their measurements [Harakteristiki stohasticheskoj vzaimosvjazi i ih izmerenija]. Moscow, USSR: Energoizdat, 320.
  26. Krasnogorov, S. I. (1998). Matrix analysis in tasks of extremum search [Matrichnyj analiz v zadachakh otyskaniya ehkstremumov]. Noginsk: Research institute 30 CSRI MO, 100.

Published

2015-06-23

How to Cite

Кулявець, Ю. В., Богатов, О. І., & Єрмакова, О. А. (2015). Influence of errors on the accuracy of the spatial monitoring results under redundant information. Eastern-European Journal of Enterprise Technologies, 3(9(75), 8–13. https://doi.org/10.15587/1729-4061.2015.44235

Issue

Section

Information and controlling system