Numerical analysis of jerry can strength under static and dynamic loads

Authors

  • Олександр Володимирович Гондлях National Technical University of Ukraine «Kyiv Polytechnic Institute», Ukraine https://orcid.org/0000-0003-2490-2829
  • Андрій Олегович Чемерис National Technical University of Ukraine "Kyiv Polytechnic Institute" 37 Peremohy ave, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0003-0849-2479
  • Владислав Юрійович Онопрієнко National Technical University of Ukraine "Kyiv Polytechnic Institute" 37 Peremohy ave, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0001-9945-8289

DOI:

https://doi.org/10.15587/1729-4061.2015.44383

Keywords:

finite element method, numerical simulation, jerry can, stress-strain state

Abstract

Such material as high-density polyethylene is used for producing jerry cans, fuel tanks, liquid storage and transportation tanks.

Significant shortcomings that may arise in the strength analysis of five-liter jerry cans for storing petroleum products were determined.

Based on the APPROX software system using the finite element moment scheme, a system that allows the numerical strength analysis of jerry cans of different shapes and sizes, with the possibility to set different physical and mechanical properties of materials, including composite materials, in a particular statics and dynamics problem statement was implemented.

A finite-element model of the jerry can was built, and numerical analysis of the strength under static and dynamic loads taking into account the load nature (stacked storage, kick) was performed.

As a result of the numerical analysis, the values of the stress-strain state of the jerry can were obtained, and stress concentration zones were identified.

The data is important since it allows to determine the optimal wall thickness for this kind of structures and define optimal storage conditions.

Author Biographies

Олександр Володимирович Гондлях, National Technical University of Ukraine «Kyiv Polytechnic Institute»

Doctor of Technical Sciences, Professor, Department of Chemical, Polymer and Silica Engineering

GoogleScholar profile: link

ID ORCID: http://orcid.org/0000-0003-2490-2829

Selected Publications:

1. Bazhenov, V. A., Saharov, A. S., Gondliah, A. V., Mel'nikov, S. L. (1994). Nelineynye zadachi mehaniki mnogosloynyh obolochek. Kiev: NDІ Budіvel'na mehanіka, 264.

2. Gondliah, A. (2012). Adaptation in ABAQUS of the iterated-analytical multilayer user finite element. Eastern-European Journal Of Enterprise Technologies, 3(7(57)), 62-68.

3. Gondliah, A. (2012). Refined model of multilayer structures deformation for progressive destruction processes study. Eastern-European Journal Of Enterprise Technologies, 2(7(56)), 52-57.

4. Gondliakh, O. V. (2012). Utochnenyi skinchennyi element korystuvacha dlia modeliuvannia v ABAQUS protsesiv rozsharuvannia bahatosharovykh konstruktsii. Naukovi visti Natsionalnoho tekhnichnoho universytetu Ukrainy "Kyivskyi politekhnichnyi instytut", 2, 114-122.

5. Gondliakh, O., Nikitin, R., Onopriienko, V. (2014). Numerical simulation of crack propagation in bimetallic spatial structures. Technology Audit And Production Reserves, 3(1(17)), 23-27. DOI: 10.15587/2312-8372.2014.25276

6. Sakharov, O. S., Shcherbyna, V. Yu., Gondliakh, O. V., Sivetskyi, V. I. (2006). SAPR. Intehrovana systema modeliuvannia tekhnolohichnykh protsesiv i rozrakhunku obladnannia khimichnoi promyslovosti. K.: TOV “Polihraf Konsaltynh”, 156.

7. Sklyut, H., Kulak, M., Heinimann, M., James, M., Gondliakh, O. V., Pashinskij, R. (2008). Automated finite element based predictions of simultaneous crack growth and delamination growth in multi-layers in advanced metallic hybrid stiffened panels using the Alcoa ASPANFP tool. Sixth International Conference on Computation of Shell & Spatial Structures, Ithaca, New York, USA, May 28-31, 2008, 52.

Андрій Олегович Чемерис, National Technical University of Ukraine "Kyiv Polytechnic Institute" 37 Peremohy ave, Kyiv, Ukraine, 03056

Senior Lecturer

Department of chemical, polymer and silica Engineering

Владислав Юрійович Онопрієнко, National Technical University of Ukraine "Kyiv Polytechnic Institute" 37 Peremohy ave, Kyiv, Ukraine, 03056

Graduate student

Department of chemical, polymer and silica Engineering

References

  1. Choi, D., White, J. L. (2000). Structure Development in Melt Spinning Syndiotactic Polypropylene and Comparison to Isotactic Polypropylene. International Polymer Processing, 15 (4), 398–405. doi: 10.3139/217.1608
  2. The patent for utility model US. Patent 215/1, B651 1/18, publ. 11/24/1976.
  3. Specifications for cans 2297-043-05757601-98.
  4. Viorel, N., Sorin, I., Neagu, Е, Racotă, R., Gligor, A., Mihail Aurel, Т. (2013). Considerations on building plastic fuel tanks and their attempt to fire test. Nonconventional Technologies Review, 57–61.
  5. Bazhenov, V., Sakharov, A., Gondlyah, A., Melnikov, S. (1994). Nonlinear problems of Mechanics of multilayer shells. Kiev: Budmehaniki, 198–223.
  6. Heimbs, S., Duwensee, T., Nogueira, A. C., Wolfrum, J. (2014). Hydrodynamic ram analysis of aircraft fuel tank with different composite T-joint designs. Structures Under Shock and Impact XIII, 141, 279–288. doi: 10.2495/susi140241
  7. Lukasiewicz, S. (1982). Lokal loads in plates and shells. Moscow: Mir, 216–235.
  8. Sakharov, A. (1982). Finite Element Method in the mechanics of solids. Kiev: Vishcha shkola, 214–279.
  9. Bate, K., Wilson, W. (1982). Numerical Methods of analysis and finite element method. Moscow: Stroyizdat, 144–165.
  10. Karamanlidis, D. (1987). The Linear Acceleration Time Integration Method revisited. Jornal of Sound and Vibrations, 115 (3), 379–385. doi: 10.1016/0022-460x(87)90284-7
  11. Sakharov, A., Gulyar, A., Kislooky, V. (1974). Investigation of the stability of axisymmetric shells under large displacements taking into account physical nonlinearity. Problems of Strength, 6, 42–47.
  12. Tennyson, R., Warram, G., Elliot, G. (1983). Annex cubic strength condition to the analysis of laminated composites fracture. In. Strength and fracture of composite materials: Znanie, 127–135.
  13. Karamanlidis, D. (2007). Asimple and efficient curved beam element for the linear and non-linear analysis of laminated composite structures. Computers and structures, 29 (4), 623–632. doi: 10.1016/0045-7949(88)90372-0
  14. Bathe, K., Wilson, E. (1973). Stability and accuracy of direct integration methods. Earthquake engineering and structural dynamics, 1 (3), 283–291. doi: 10.1002/eqe.4290010308
  15. Nickell, R. (1971). On the stability of approximation operators in problem of structural dinamics. International Journal of Solids and Structures, 7 (3), 499–520. doi: 10.1016/0020-7683(71)90028-x
  16. Sakharov, А. S., Gondlyah, A. V., Chemeris, A. O. (2005). Numerical simulation of fracture containment nuclear power circuit in a fall on her plane. Proceedings of the Academy of Engineering Sciences of Ukraine, 1, 17–23.
  17. Sakharov, А. S., Gondlyah, A. V., Sivetskyy, V. I., Shcherbyna, V. U. (2008). CAD. Application software system VESNA in calculations of processes and equipment accounting hydraulic power loads. C.: T "ECMO", 128–155.
  18. Sakharov, А. S., Gondlyah, A. V., Sivetskyy, V. I., Shcherbyna, V. U. (2006). CAD. Integrated modeling of technological processes and equipment calculation chemical industry. Kiev: LLC "Polygraph Consulting", 108–126.

Published

2015-06-24

How to Cite

Гондлях, О. В., Чемерис, А. О., & Онопрієнко, В. Ю. (2015). Numerical analysis of jerry can strength under static and dynamic loads. Eastern-European Journal of Enterprise Technologies, 3(7(75), 23–29. https://doi.org/10.15587/1729-4061.2015.44383

Issue

Section

Applied mechanics