Development and study of contact-modular heating system using immersion combustion units

Authors

  • Валерий Евгеньевич Никольский Ukrainian State Chemical-Technology University Gagarina 8, Dnepropetrovsk, Ukraine, 49005, Ukraine https://orcid.org/0000-0001-6069-169X

DOI:

https://doi.org/10.15587/1729-4061.2015.47459

Keywords:

immersion combustion units, condensing boilers, heat-mass transfer, energy-technological efficiency

Abstract

Contact-modular systems for individual heating of various installations using low-emission immersion combustion units with the organization of multiple phase inversion and oscillation modulation of contacting phases were developed and tested in industrial conditions. In order to intensify heat-mass transfer processes in the developed contact units, they were equipped with the organization system of multiple inversion of contacting phases, or a device for oscillation modulation of contacting phases. The design, operation principle, and a brief description of these units were presented. The units are equipped with an additional contact heat exchanger for heat recovery of combustion products by partial heating of water from the heating system. Analysis of the results of the state tests has confirmed the high energy-technological efficiency of the proposed design.

Author Biography

Валерий Евгеньевич Никольский, Ukrainian State Chemical-Technology University Gagarina 8, Dnepropetrovsk, Ukraine, 49005

Candidate of Technical Sciences, Associate Professor

Department of Energetic

References

  1. Tovazhniansky, L. L., Anipko, O. B., Malarenko, V. A. (2002). The energy-technology basis of the industry. Kharkov: KhPI, 436.
  2. Alabovsky, A. N., Udima, P. G. (1994). Immersed combustion apparatus. Moskow: MEI, 256.
  3. Ivanov, A. (2004). Through unpossible. Ukrainian Technical newspaper. Kyiv, 21
  4. Guillet, R. (1991). Vapor pump and condensing heater. Gas Warme International, 40 (6), 248–252.
  5. Haep, J., Nani, M. (1999). Kompakte Brennwertkessel auch bis 250KW. Gas Warme International, 48 (6), 365–369.
  6. Paderno, D. Y., Sigal, A. I., Melezhik, A. V. (1999). Intensification of gas purification processes and heat-mass transfer in the contact heat utilizing apparatus using the active stream packing. In Proc. of the IХ Intern. Conference "The Problem of ecology and exploitation of energetic objects". Kyiv, 39–42.
  7. Tovazhniansky, L. L., Pertsev, L. P., Shaporev, V. P. (2004). Heat energy of immersed combustion in the problems of heat supply and ecology in Ukraine. Integrated technology and energy saving, 3, 3–12.
  8. Soroka, B. S., Lukianchikov, A. S., Nikolsky, V. E., Nikitin, V. Y. (1989). Immersed combust apparatus for effective contact liquid heating. Moskow: VNIIGazprom, 56.
  9. Haep, J., Nani, M. (2000). Kompakte Brennwertkessel bis 1000KW-Teil 1. Gas Warme International, 49 (4(5)), 228–233.
  10. Haep, J., Nani, M. (2000). Kompakte Brennwertkessel bis 1000KW-Teil 2. Gas Warme International, 49 (11), 577–579.
  11. More Efficiency, Less Pollution. (1997, Marzo). Corolla Paek, AFATEC: Promotional material, 7.
  12. ТУ У 29.7-02070758-001:2008. Universal heater of technological liquids UHTL-101.01. Technical description. (2008). Dnepropetrovsk.
  13. Nikolsky, V. Y., Zadorsky, V. M. (15.04.2015). Immersed combustion apparatus. Pat. Appl № 6195/ЗУ/15. Ukraine.
  14. Nikolsky, V. Y., Zadorsky, V. M. (15.04.2015). Immersed combustion apparatus for liquid evoparation. Pat. Appl № 6184/ЗУ/15. Ukraine.
  15. Soroka, B. S., Sandor, P., Pyanykh, K. E., Andrienko, D. V. (2001). The system of decentralized heat supply based on submerged combustion facilities: thermodynamic analysis and improvement direction. Industr. Heat Engineering, 3, 112–119.

Published

2015-08-04

How to Cite

Никольский, В. Е. (2015). Development and study of contact-modular heating system using immersion combustion units. Eastern-European Journal of Enterprise Technologies, 4(8(76), 31–35. https://doi.org/10.15587/1729-4061.2015.47459

Issue

Section

Energy-saving technologies and equipment