Optimization of heat exchangers of refrigeration machines by entropy generation minimization method

Authors

  • Лариса Ивановна Морозюк Odessa National Academy of Food Technologies 112 Kanatna str., Odesa, Ukraine, 65039, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2015.47753

Keywords:

heat exchanger, entropy generation minimization method, characteristics, water condenser

Abstract

The development of new and modernization of serial heat exchangers are inextricably linked with the identification of their effectiveness. The effectiveness of the heat exchanger as part of the refrigeration machine was analyzed from three perspectives: economic, energy and thermodynamic using specific criteria.

Considering modern thermodynamic analysis methods, which are based on determining irreversible losses in the processes of refrigeration machines, the entropy generation minimization method for analyzing heat exchangers was proposed. The choice of the method has provided an analysis of the processes in a particular heat exchanger of the refrigeration machine irrelatively of other elements, and analysis of one flow in the heat exchanger, which determines the energy side of the operation.

It is shown on a particular example of the water condenser that using the entropy generation minimization method eliminates complex and unproductive calculations, providing the designer with the tools, the action principle of which is based on scientific and independent thermodynamic laws. The characteristics that meet the entropy generation minimum, ensure power-saving mode at the design stage and in a subsequent operation. The method is an alternative to a feasibility study and preferred for refrigeration machines due to the absence of cost indexes.

Author Biography

Лариса Ивановна Морозюк, Odessa National Academy of Food Technologies 112 Kanatna str., Odesa, Ukraine, 65039

PhD, Associate Professor

Department of refrigerators, and air conditioning installations.

Institute of Refrigeration, and cryotechnology Ecoenergy them. V. S. Martynov

References

  1. Martynenko, O. G. (Ed.) (1987). Spravochnik po teploobmennikam. Vol. 2. Moscow: Energoatomizdat, 352.
  2. Danilova, G. N., Bogdanov, S. N., Ivanov, O. P. et. al. (1973). Teploobmennye apparaty holodil'nyh ustanovok. Lviv: Mashinostroenie, 328.
  3. Gogolin, A. A. (1979). O sopostavlenii i optimizacii teploobmennyh apparatov holodil'nyh mashin. Holodil'naya tehnika, 12, 23–27.
  4. Kalafati, D. D., Popalov, V. V. (1986). Optimizaciya teploobmennikov po effektivnosti teploobmena. Energoatomizdat, 152.
  5. Antuf'ev, V. M. (1966). Effektivnost' razlichnyh form konvektivnyh poverhnostei nagreva. Energiya, 184.
  6. Vukalovich, M. P., Novikov, I. I. (1972). Termodinamika. Moscow: Mashinostroenie, 672.
  7. Martynovskii, V. S. (1979). Cikly, shemy i harakteristiki termotransformatorov. Moscow: Energiya, 288.
  8. Bejan, A. (1988). Advanced Engineering Thermodynamics. New York: Wiley, 758.
  9. Bejan, A. (1982). Entropy Generation through Heat and Fluid Flow. John Wiley & Sons, New York, 248.
  10. Poulikakos, D., Bejan, A. (1982). Fin Geometry for Minimum Entropy Generation in Forced Convection. Journal of Heat Transfer, 104 (4), 616–623. doi: 10.1115/1.3245176
  11. Le Goff, P., De Olivera, S., Schwarzer, B., Tondeur, D. (1991). Comparison of the entropic exergetic and economic optima of a heat exchanger. Analysis of Thermal and Energy Systems, Proceedings of International Conference Athens. Athens, 105–116.
  12. Khan, W. A., Culham, R. J., Yovanovich, M. M. (2007). Optimal Design of Tube Banks in Crossflow Using Entropy Generation Minimization Method. Journal of Thermophysics and Heat Transfer, 21 (2), 372–378. doi: 10.2514/1.26824
  13. Khan, W. A., Yovanovich, M. M. (2007). Optimization of pin-fin heat sinks in bypass flow using entropy generation minimization method. ASME 2007 InterPACK Conference, 1–9. doi: 10.1115/ipack2007-33983
  14. Khan, W. A., Yovanovich, M. M., Culham, J. R. (2006). Optimization of microchannel heat sinks using entropy generation minimization method. Twenty-Second Annual IEEE Semiconductor Thermal Measurement And Management Symposium, 78–86. doi: 10.1109/stherm.2006.1625210
  15. Jafari, A. (2009). Optimization of a circular microchannel heat sink using entropy generation minimization method. University technology Malasyia, 108.
  16. Revellin, R., Lips, S., Khandekar, S., Bonjour, J. (2009). Local entropy generation for saturated two-phase flow. Energy, 34 (9), 1113–1121. doi: 10.1016/j.energy.2009.03.014
  17. Yazdi, M. H., Abdullah, S., Hasim, I., Sopian, K., Zaharim, A. (2009). Entropy generation analysis of liquid fluid past embedded open parallel microchannels within the surface. European journal of scientific research, 28 (3), 462–470.
  18. Ahmadi, P., Hajabdollahi, H., Dincer, I. (2011). Cost and Entropy Generation Minimization of a Cross-Flow Plate Fin Heat Exchanger Using Multi-Objective Genetic Algorithm. Journal of Heat Transfer, 133 (2), 021801. doi: 10.1115/1.4002599
  19. Nikulshin, R. K., Morosuk, L. I., Sokolovskaya, V. V. (2014). Analisis of the shell-in-tube condenser characteristics for energy conservation. Refrigeration Engineering and Techology, 1 (147), 37–43 doi: 10.15673/0453-8307.1/2014.32648
  20. Koshkin, N. N. (1976). Teplovye i konstruktivnye raschyoty holodil'nyh mashin. Lviv: Mashinostroenie, 463.

Published

2015-08-04

How to Cite

Морозюк, Л. И. (2015). Optimization of heat exchangers of refrigeration machines by entropy generation minimization method. Eastern-European Journal of Enterprise Technologies, 4(8(76), 42–48. https://doi.org/10.15587/1729-4061.2015.47753

Issue

Section

Energy-saving technologies and equipment