Development of the mathematical model of the problem of reengineering topological structures of large-scale monitoring systems

Authors

DOI:

https://doi.org/10.15587/1729-4061.2015.47865

Keywords:

large-scale monitoring system, structure, topology, reengineering, efficiency, multi-criteria problem, model

Abstract

The paper deals with the development of a mathematical model of the multicriteria problem of reengineering topological structures of large-scale monitoring systems. Based on the analysis of current projects and publications, many indicators that have a significant impact on the structural and topological characteristics of large-scale monitoring systems were singled out. The basic problem of reengineering topological structures of large-scale monitoring systems was formulated and formalization of the most frequently used private efficiency indexes of options was performed, objective function of additional costs was improved by taking into account the reuse possibility of existing equipment and simplified (in terms of reducing memory used). Relations for assessing the operativeness, reliability and survivability given their explicit dependence on the parameters of the topological structure of the system were proposed. The mathematical model allows to obtain solutions taking into account the constraints and assessing the options in terms of cost, operativeness, reliability and survivability. 

Author Biographies

Владимир Валентинович Бескоровайный, Kharkiv National University of Radioelectronics Lenin Ave, 14, Kharkov, Ukraine, 61166

Doctor of Technical Sciences, Professor

Department of System Engineering

Ксения Евгеньевна Подоляка, Kharkiv National University of Radioelectronics 14 Lenin ave., Kharkov, Ukraine, 61166

Postgraduate student

Department of System Engineering

References

  1. Beskorovainyi, V. V. (2002). Sistemologicheskiy analiz problemy strukturnogo sinteza territorial’no raspredelennyh sistem. Avtomatizirovannye sistemy upravleniya i pribory avtomatiki, 120, 29–37.
  2. Beskorovainyi, V. V. (2004). Metod structurno-topologicheskoy optimizatsii dlya reinginiginra territorial’no-raspredelennyh objectov. Systemy obrobky informatsii, 4, 26–33.
  3. Kochkar’, D. A., Porubyans’kiy, A. V., Orehov A. A. (2012). Proektirovanie infrastructury nazemnoy sistemy monitoringa lesnyh pozharov. Radioelectronika i comp’yuterni systemy, 6, 197–201.
  4. Dell’Olmo, P., Ricciardi, N., Sgalambro, A. (2014). A Multiperiod Maximal Covering Location Model for the Optimal Location of Intersection Safety Cameras on an Urban Traffic Network. Procedia - Social and Behavioral Sciences, 108, 106–117. doi: 10.1016/j.sbspro.2013.12.824
  5. Astrakov, S. N., Erzin, A. I. (2012). Postroeine effectivnyh modeley pokrytiya pri monitoringe protyazhennyh objectov. Vychislitel’nye tehnologii, 17 (1), 26–34.
  6. Kochkar, D. A., Medintsev, S. Yu., Orehov, A. A. (2010). Optimal’noe pazmeshchenie vyshek nablyudeniya nazemnyh system video-monitoringa lesnih pozharov. Radioelectronika i comp’yuterni systemy, 7, 311–314.
  7. Malyshev, V. V., Krasil’shchkov, M. N., Bobronnikov, V. T., Nesterenko, O. P., Federov, A. V. (2000). Sputnikovye sistemy monitorings: analiz, sintez i upravlenie. Moskva : MAI, 568.
  8. Ahmed, М. (2015). Remote monitoring with hierarchical network architectures for large-scale wind power farms. Journal of Electrical Engineering & Technology, 10 (3), 1319–1327. doi: 10.5370/jeet.2015.10.3.1319
  9. Zhang, Y., Yang, W., Han, D., Kim, Y.-I. (2014). An Integrated Environment Monitoring System for Underground Coal Mines—Wireless Sensor Network Subsystem with Multi-Parameter Monitoring. Sensors, 14 (7), 13149–13170. doi: 10.3390/s140713149
  10. Nefedov, L. I., Shevchenko, O. N., Kudyrko, O. N. (2014). Model’ structurno-topologicheskogo sinteza sistemy monitoringa kachestva dobychi gaza. ScienceRise, 2 (2), 61–67. doi: 10.15587/2313-8416.2014.27269
  11. Mogheir, Y., de Lima, J. L. M. P., Singh, V. P. (2008). Entropy and Multi-Objective Based Approach for Groundwater Quality Monitoring Network Assessment and Redesign. Water Resources Management, 23 (8), 1603–1620. doi: 10.1007/s11269-008-9343-8
  12. Harmanciogammalu, N. B., Fistikoglu, N. B., Ozkul, O., Singh, V. P., Alpaslan, M. N. (1999). Water quality monitoring network design. Dordrecht: Springer Science & Business Media, 290.
  13. Petrov, E. G., Pisklakova V. I., Beskorovainyi, V. V. (1992). Territorial’no-raspredelennye sisteny obsluzhivaniya. Kiev: Tehnika, 208.
  14. Beskorovainyi, V. V. (2010). Otsenka vremeni dostupa k informatsionnym resursam raspredelennyh baz dannyh pri reshenii zadach sinteza ih fizicheskih structur. Sistemy upravlinnya, navigatsii ta zv’yazku, 3 (15), 210–214.
  15. O'Connor, P. (2011). Practical reliability engineering. Chichester: John Wiley & Sons, 512. doi: 10.1002/9781119961260
  16. Akimova, G. P., Solov’ev, A. V. (2006). Metodologiya otsenki nadezhnosti ierarhicheskih informatsionnyh sistem.Trudy ISA RAN, 23, 18–47.
  17. Gertsbakh, I. B., Shpungin, Y. (2009). Models of network reliability: analysis, combinatorics, and Monte Carlo. Chicago: CRC Press, 217. doi: 10.1201/b12536
  18. Levinson, D., Liu, H. X., Bell, M. (2011). Network Reliability in Practice: Selected Papers from the Fourth International Symposium on Transportation Network Reliability. Dordrecht: Springer Science & Business Media, 268.
  19. Beichelt, F., Tittmann, P. (2009). Reliability and maintenance: networks and systems. Chicago: CRC Press, 344.
  20. Bezkorovainyi, V. V. (2002) Sintez logicheskoy shemy sistemnogo proektirovaniya territorial’no raspredelennyh ob’ektov. Radioelectronica i informatika, 3, 94–96.
  21. Ovezgeldyev, O. A., Petrov, E. G., Petrov, K. E. (2002). Sintez i identificatsiya modeley mnogofactornogo otsenivaniya i optimizatsii. Kiev: Naukova dumka, 161.

Published

2015-08-27

How to Cite

Бескоровайный, В. В., & Подоляка, К. Е. (2015). Development of the mathematical model of the problem of reengineering topological structures of large-scale monitoring systems. Eastern-European Journal of Enterprise Technologies, 4(4(76), 49–55. https://doi.org/10.15587/1729-4061.2015.47865

Issue

Section

Mathematics and Cybernetics - applied aspects