Design of gasoline vapor ejection condensator from vapor and gas mixtures
DOI:
https://doi.org/10.15587/1729-4061.2015.48201Keywords:
ejection heat exchanger, heat-mass transfer, convective and molecular diffusion, mathematical modelAbstract
The calculation method of the ejection apparatus, which operates with flammable and explosive vapor-gas flow is considered. Calculation of the apparatus is performed without prior experimental research of the operation with gasoline vapor. The calculation method is based on two models. The first Pazhi-Galustov model is theoretical, the second Andreev model uses similarity criteria. The Stefan formula, as applied to the polar coordinate system was derived, which has allowed to give a more rigorous description of the mass transfer mechanisms at the droplet interface. The results of Andreev E.I., obtained for the nozzle chambers of air conditioners were used for deriving the heat-mass transfer intensity equation according to the first model by numerical simulation. The approach, which has allowed to develop recommendations for a constructive design of the ejection apparatus for condensing gasoline vapors without dangerous experimental research was proposed. In particular, the numerical experiment has shown that in order to reduce materials consumption, the length of the apparatus is advisable to be no more than 1.5 m, and the ratio of mass flows of brine and vapor-gas mixture, providing the necessary gasoline vapor recovery degree must be at least 5:1.
References
- Kolohryvov, M. M., Buzovskyi, V. P. Pat. 98849 Ukrayina, MPK (2015.01) B01D 5/00. Kondensatsiynyi sposib ulovliuvannya pariv naftoproduktiv z parohazovykh potokiv, shcho vidkhodiat. № u 2014 12463; zaiavl. 20.11.2014 ; opubl. 12.05.2015, Byul. № 9, 5.
- Sokolov, Ye. Ya., Zinger, N. M. (1989). Struinye apparaty. Moscow: Energoatomizdat, 352.
- Jones, J. (2003). Casing Vapor Recovery Systems: An Open or Shut Case. Society of Petroleum Engineers.
- Goodyear, M. A., Graham, A. L., Stoner, J. B., Boyer, B. E., Zeringue, L. P. Vapor Recovery of Natural Gas Using Non-Mechanical Technology. Proceedings of SPE/EPA/DOE Exploration and Production Environmental Conference, 2003. doi: 10.2523/80599-ms
- Buzovskiy, V. P., Kologrivov, M. M. (2013). Rezultaty matematicheskogo modelirovaniia gidrodinamicheskoi kartiny v ezhektsionnom apparate. Kholodilna tekhnika i tekhnologiia, 6 (146), 29–37.
- Galustov, V. S. (1989). Priamotochnye raspylitelnye apparaty v teploenergetike. Moscow: Energoatomizdat, 240.
- Pazhi, D. G., Galustov, V. S. (1984). Osnovy tekhniki raspylivaniya zhidkostey. Moscow: Himija, 253.
- Kuchma, A. E., Shchekin, A. K. (2012). Avtomodelnyi rezhim rosta kapli pri uchete stefanovskogo techeniia i zavisimosti koeffitsienta diffuzii ot sostava parogazovoi sredy . Kolloidnyi zhurnal, 74 (2), 231–238.
- Shiliaev, M. I., Khromova, E. M. (2008). Modelirovanie protsessa teplomassoobmena v orositelnykh kamerakh. Teoreticheskie osnovy khimicheskoi tekhnologii, 42 (4), 419–428 .
- Shiliaev, M. I., Khromova, E. M., Grigorev, A. V., Tumashova, A. V. (2011). . Gidrodinamika i teplomassoobmen v forsunochnykh kamerakh orosheniia. Teplofizika i aeromekhanika, 18 (1), 15–26 .
- Semenov, V., Nikitin, N. (2008). Condensation Heat Transfer on Noncircular Pipes in Stationary Vapor. Heat Transfer Research, 39 (4), 317–326. doi: 10.1615/heattransres.v39.i4.50
- Andreyev, E. I. (1985). Raschet teplo- i massoobmena v kontaktnykh apparatakh. Lviv: Energoatomizdat, 192.
- Gvozdkov, A. N., Gvozdkov, M. A. (2009). Izuchenie protsessov teplo - i vlagoobmena v forsunochnoi kamere orosheniya kapelno - plenochnogo tipa . Seriia : Stroitelstvo i arkhitektura, 14, 161.
- Balachandar, S., Eaton, J. K. (2010). Turbulent Dispersed Multiphase Flow. Annual Review of Fluid Mechanics, 42 (1), 111–133. doi: 10.1146/annurev.fluid.010908.165243
- Maxey, M. R., Patel, B. K., Chang, E. J., Wang, L.-P. (1997). Simulations of dispersed turbulent multiphase flow. Fluid Dynamics Research, 20 (1-6), 143–156. doi: 10.1016/s0169-5983(96)00042-1
- Sou, S.; Deich, M. Ye. (Ed.) (1971). Gidrodinamika mnogofaznykh sistem. Moscow: Mir, 536.
- Kokorin, O. Ya. (1976). Ustanovki konditsionirovaniia vozdukha. Second edition. Moscow: «Mashinostroyeniye», 264.
- Isachenko, V. P., Osipova, V. A., Sukomel, A. S. (1975). Teploperedacha: Uchebnoye posobiye dlya vuzov. Moscow: Energiia, 488.
- Tolchinskiy, A. R., Mankovskii, O. N., Aleksandrov, M. V. (1976). Teploobmennaia apparatura khimicheskikh proizvodstv. Inzhenernyye metody rascheta, 368.
- Peterson, P. F., Schrock, V. E., Kageyama, T. (1993). Diffusion Layer Theory for Turbulent Vapor Condensation With Noncondensable Gases. Journal of Heat Transfer, 115 (4), 998–1003. doi: 10.1115/1.2911397
- Isachenko, V. P. (1977). Teploobmen pri kondensatsii. Moscow: Energiya, 240.
- Zaitsev, V. F., Polianin , A. D. (2001). Spravochnik po obyknovennym i differentsialnym uravneniiam. Moscow: FIZMATLIT, 577.
- Tsvetkov, F. F., Grigoryev, B. A. (2001). Teplomassoobmen. Moscow: Izdatel'stvo MJeI, 550.
- Fuks , N. A. (1958). Ispareniye i rost kapel v gazoobraznoy srede. Izdatelsto USSR, 92.
- Barilovich, V. A. (2009). Osnovy termogazodinamiki dvukhfaznykh potokov i ikh Chislennoye resheniye. Izdatel'stvo Politehnicheskogo universiteta, 425.
- Kologrivov, M. M., Buzovskii, V. P. (2014) Inzhenernaia metodika rascheta teplomassoobmena v ezhektsionnom apparate. Nauchnyye raboty Odesskoi natsionalnoi akademii pishchevykh tekhnologiy, 45 (1), 38–45.
- Aleksandrov, V. Y., Klimovskii, K. K. (2009). A procedure for calculating gas ejectors. Thermal engineering, 56 (8), 656–659. doi: 10.1134/s0040601509080060
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Михаил Михайлович Кологривов, Виталий Петрович Бузовский
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.