Design of gasoline vapor ejection condensator from vapor and gas mixtures

Authors

DOI:

https://doi.org/10.15587/1729-4061.2015.48201

Keywords:

ejection heat exchanger, heat-mass transfer, convective and molecular diffusion, mathematical model

Abstract

The calculation method of the ejection apparatus, which operates with flammable and explosive vapor-gas flow is considered. Calculation of the apparatus is performed without prior experimental research of the operation with gasoline vapor. The calculation method is based on two models. The first Pazhi-Galustov model is theoretical, the second Andreev model uses similarity criteria. The Stefan formula, as applied to the polar coordinate system was derived, which has allowed to give a more rigorous description of the mass transfer mechanisms at the droplet interface. The results of Andreev E.I., obtained for the nozzle chambers of air conditioners were used for deriving the heat-mass transfer intensity equation according to the first model by numerical simulation. The approach, which has allowed to develop recommendations for a constructive design of the ejection apparatus for condensing gasoline vapors without dangerous experimental research was proposed. In particular, the numerical experiment has shown that in order to reduce materials consumption, the length of the apparatus is advisable to be no more than 1.5 m, and the ratio of mass flows of brine and vapor-gas mixture, providing the necessary gasoline vapor recovery degree must be at least 5:1.

Author Biographies

Михаил Михайлович Кологривов, Odesa National Akademy of Food Technologies 112 Kanatna str., Odesa, Ukraine, 65000

PhD, Associate Professor

Department of heating energy and energy sources pipeline transport 

Виталий Петрович Бузовский, Odesa National Akademy of Food Technologies 112 Kanatna str., Odesa, Ukraine, 65000

Assistant

Department of heating energy and energy sources pipeline transport 

References

  1. Kolohryvov, M. M., Buzovskyi, V. P. Pat. 98849 Ukrayina, MPK (2015.01) B01D 5/00. Kondensatsiynyi sposib ulovliuvannya pariv naftoproduktiv z parohazovykh potokiv, shcho vidkhodiat. № u 2014 12463; zaiavl. 20.11.2014 ; opubl. 12.05.2015, Byul. № 9, 5.
  2. Sokolov, Ye. Ya., Zinger, N. M. (1989). Struinye apparaty. Moscow: Energoatomizdat, 352.
  3. Jones, J. (2003). Casing Vapor Recovery Systems: An Open or Shut Case. Society of Petroleum Engineers.
  4. Goodyear, M. A., Graham, A. L., Stoner, J. B., Boyer, B. E., Zeringue, L. P. Vapor Recovery of Natural Gas Using Non-Mechanical Technology. Proceedings of SPE/EPA/DOE Exploration and Production Environmental Conference, 2003. doi: 10.2523/80599-ms
  5. Buzovskiy, V. P., Kologrivov, M. M. (2013). Rezultaty matematicheskogo modelirovaniia gidrodinamicheskoi kartiny v ezhektsionnom apparate. Kholodilna tekhnika i tekhnologiia, 6 (146), 29–37.
  6. Galustov, V. S. (1989). Priamotochnye raspylitelnye apparaty v teploenergetike. Moscow: Energoatomizdat, 240.
  7. Pazhi, D. G., Galustov, V. S. (1984). Osnovy tekhniki raspylivaniya zhidkostey. Moscow: Himija, 253.
  8. Kuchma, A. E., Shchekin, A. K. (2012). Avtomodelnyi rezhim rosta kapli pri uchete stefanovskogo techeniia i zavisimosti koeffitsienta diffuzii ot sostava parogazovoi sredy . Kolloidnyi zhurnal, 74 (2), 231–238.
  9. Shiliaev, M. I., Khromova, E. M. (2008). Modelirovanie protsessa teplomassoobmena v orositelnykh kamerakh. Teoreticheskie osnovy khimicheskoi tekhnologii, 42 (4), 419–428 .
  10. Shiliaev, M. I., Khromova, E. M., Grigorev, A. V., Tumashova, A. V. (2011). . Gidrodinamika i teplomassoobmen v forsunochnykh kamerakh orosheniia. Teplofizika i aeromekhanika, 18 (1), 15–26 .
  11. Semenov, V., Nikitin, N. (2008). Condensation Heat Transfer on Noncircular Pipes in Stationary Vapor. Heat Transfer Research, 39 (4), 317–326. doi: 10.1615/heattransres.v39.i4.50
  12. Andreyev, E. I. (1985). Raschet teplo- i massoobmena v kontaktnykh apparatakh. Lviv: Energoatomizdat, 192.
  13. Gvozdkov, A. N., Gvozdkov, M. A. (2009). Izuchenie protsessov teplo - i vlagoobmena v forsunochnoi kamere orosheniya kapelno - plenochnogo tipa . Seriia : Stroitelstvo i arkhitektura, 14, 161.
  14. Balachandar, S., Eaton, J. K. (2010). Turbulent Dispersed Multiphase Flow. Annual Review of Fluid Mechanics, 42 (1), 111–133. doi: 10.1146/annurev.fluid.010908.165243
  15. Maxey, M. R., Patel, B. K., Chang, E. J., Wang, L.-P. (1997). Simulations of dispersed turbulent multiphase flow. Fluid Dynamics Research, 20 (1-6), 143–156. doi: 10.1016/s0169-5983(96)00042-1
  16. Sou, S.; Deich, M. Ye. (Ed.) (1971). Gidrodinamika mnogofaznykh sistem. Moscow: Mir, 536.
  17. Kokorin, O. Ya. (1976). Ustanovki konditsionirovaniia vozdukha. Second edition. Moscow: «Mashinostroyeniye», 264.
  18. Isachenko, V. P., Osipova, V. A., Sukomel, A. S. (1975). Teploperedacha: Uchebnoye posobiye dlya vuzov. Moscow: Energiia, 488.
  19. Tolchinskiy, A. R., Mankovskii, O. N., Aleksandrov, M. V. (1976). Teploobmennaia apparatura khimicheskikh proizvodstv. Inzhenernyye metody rascheta, 368.
  20. Peterson, P. F., Schrock, V. E., Kageyama, T. (1993). Diffusion Layer Theory for Turbulent Vapor Condensation With Noncondensable Gases. Journal of Heat Transfer, 115 (4), 998–1003. doi: 10.1115/1.2911397
  21. Isachenko, V. P. (1977). Teploobmen pri kondensatsii. Moscow: Energiya, 240.
  22. Zaitsev, V. F., Polianin , A. D. (2001). Spravochnik po obyknovennym i differentsialnym uravneniiam. Moscow: FIZMATLIT, 577.
  23. Tsvetkov, F. F., Grigoryev, B. A. (2001). Teplomassoobmen. Moscow: Izdatel'stvo MJeI, 550.
  24. Fuks , N. A. (1958). Ispareniye i rost kapel v gazoobraznoy srede. Izdatelsto USSR, 92.
  25. Barilovich, V. A. (2009). Osnovy termogazodinamiki dvukhfaznykh potokov i ikh Chislennoye resheniye. Izdatel'stvo Politehnicheskogo universiteta, 425.
  26. Kologrivov, M. M., Buzovskii, V. P. (2014) Inzhenernaia metodika rascheta teplomassoobmena v ezhektsionnom apparate. Nauchnyye raboty Odesskoi natsionalnoi akademii pishchevykh tekhnologiy, 45 (1), 38–45.
  27. Aleksandrov, V. Y., Klimovskii, K. K. (2009). A procedure for calculating gas ejectors. Thermal engineering, 56 (8), 656–659. doi: 10.1134/s0040601509080060

Published

2015-08-18

How to Cite

Кологривов, М. М., & Бузовский, В. П. (2015). Design of gasoline vapor ejection condensator from vapor and gas mixtures. Eastern-European Journal of Enterprise Technologies, 4(6(76), 29–37. https://doi.org/10.15587/1729-4061.2015.48201

Issue

Section

Technology organic and inorganic substances