Study of the urea hydrolysis kinetics in the precipitation conditions of hydroxides and metal salts

Authors

  • Елена Николаевна Корчуганова East Ukraine Volodymyr Dahl National University 59а Radyanskyi ave., Severodonetsk, Ukraine, 93400, Ukraine https://orcid.org/0000-0002-6858-9857
  • Эмилия Владимировна Танцюра East Ukraine Volodymyr Dahl National University 59а Radyanskyi ave., Severodonetsk, Ukraine, 93400, Ukraine https://orcid.org/0000-0002-1707-0502
  • Камила Рамилевна Абузарова East Ukraine Volodymyr Dahl National University 59а Radyanskyi ave., Severodonetsk, Ukraine, 93400, Ukraine https://orcid.org/0000-0002-3204-6957
  • Павел Владимирович Пригородов East Ukraine Volodymyr Dahl National University 59а Radyanskyi ave., Severodonetsk, Ukraine, 93400, Ukraine https://orcid.org/0000-0002-4328-3536

DOI:

https://doi.org/10.15587/1729-4061.2015.51057

Keywords:

urea, hydrolysis, precipitation, kinetics, reaction rate, dispersbility, hydroxides, carbonates

Abstract

The results of studies of the urea hydrolysis kinetics in the temperature conditions corresponding to the precipitation conditions of hydroxides and metal salts were presented. The research was carried out at temperatures of 80-100 °C.

The process mechanism was determined - the first-order reaction takes place, the kinetic equation of the urea hydrolysis process was obtained, the dependence of the reaction rate on temperature was defined. The activation energy - 88 kJ, indicating the process flow in the kinetic region was calculated. The rates of accumulation of the hydrolysis products - ammonia and carbon dioxide, which are precipitators of hydroxides and metal salts, in the solution were experimentally studied. It was found that in the hydrolysis process, the amount of ammonia and carbon dioxide in the solution decreases.  The temperature at which the there is the highest amount of hydrolysis products in the solution is 90 °C.

Author Biographies

Елена Николаевна Корчуганова, East Ukraine Volodymyr Dahl National University 59а Radyanskyi ave., Severodonetsk, Ukraine, 93400

Assistant professor, PhD

Department of general and physical chemistry

Эмилия Владимировна Танцюра, East Ukraine Volodymyr Dahl National University 59а Radyanskyi ave., Severodonetsk, Ukraine, 93400

Postgraduate student

Department of general and physical chemistry

Камила Рамилевна Абузарова, East Ukraine Volodymyr Dahl National University 59а Radyanskyi ave., Severodonetsk, Ukraine, 93400

Postgraduate student

Department of general and physical chemistry

Павел Владимирович Пригородов, East Ukraine Volodymyr Dahl National University 59а Radyanskyi ave., Severodonetsk, Ukraine, 93400

Postgraduate student

Department of general and physical chemistry

References

  1. Wang, L. S., Hong, R. Y. (2011). Synthesis, Surface Modification and Characterization of Nanoparticles. Advances in Nanocomposites - Synthesis, Characterization and Industrial Applications, 19, 289–323. doi: 10.5772/10540
  2. Oskam, G. (2006). Metal oxide nanoparticles: synthesis, characterization and application. Journal of Sol-Gel Science and Technology, 37 (3), 161–164. doi: 10.1007/s10971-005-6621-2
  3. Korchuganova, O. M., Ovsienko, O. L., Abuzarova, K. R. (2014). Sintez dribnodispersnih oksigidroksidiv zaliza(III): karbamidne osadzhennya. Naukovi visti KPI, 6, 115–119.
  4. Hu, L., Qu, B., Chen, L., Li, Q. (2013). Low-temperature preparation of ultrathin nanoflakes assembled tremella-like NiO hierarchical nanostructures for high-performance lithium-ion batteries. Materials Letters, 108, 92–95. doi: 10.1016/j.matlet.2013.06.060
  5. Yao, Y., Zhang, J., Wei, Z., Yu, A. (2012). Hydrothemal Synthesis of Porous NiO Nanosheets and Application as Anode Material For Lithium Ion Batteries. Int. J. Electrochem. Sci., 7, 1433–1442.
  6. Marinho, J. Z., Romeiro, F. C., Lemos, S. C. S., Motta, F. V., Riccardi, C. S., Li, M. S., Longo, E., Lima, R. C. (2012). Urea-Based Synthesis of Zinc Oxide Nanostructures at Low Temperature. Journal of Nanomaterials, 3, 1–7. doi: 10.1155/2012/427172
  7. Korchuganova, O. M., Suvorin, V. O., Svetikov, O. O. (2002). Doslidzhennya protsesu osadzhennya gidroksidu alyuminiyu karbamidom z rozchinu nitratu alyuminiyu. Himichna promislovist Ukrayini, 1, 16–20.
  8. Arhipova, V. V., Melnikov, B. I., Makarchenko, N. P. (2010). Issledovanie razmerov chastits karbonata kaltsiya, poluchennyih himicheskim osazhdeniem iz rastvorov. Visnik Natsionalnogo Tehnichnogo Universitetu «HPI», 10, 26–34.
  9. Schegoleva, V. I. (Ed.) (1965). Analiticheskiy kontrol proizvodstva v azotnoy promyishlennosti [Analytical control of production in nitrogen industry]. Мoscow: Himiya, 100.
  10. Melnikov, B. I., Vasilenko, I. A., Astrelin, I. M. (2008). Doslidzhennya kinetiki gomogennogo gidrolizu sulfatu zaliza(II) pri nayavnosti karbamidu. Naukovi visti KPI, 3, 130–134.
  11. Ramm, V. M. (1976). Absorbtsiya gazov [Absorption of gases]. Мoscow: Himiya, 656.
  12. Korchuganova, O. M., Abuzarova, K. R., Zarayska, O. S., Kursa, N. E. (2012). Doslidzhennya vplivu pH na kinetiku gidrolizu karbamidu. Naukovi visti KPI, 3, 50–55.
  13. Jones, C., Brown, B. D., Engel, R., Horneck, D., Olson-Rutz, K. (2013). Factors affecting Nitrogen Ferti. Available at: http://landresources.montana.edu/soilfertility/documents/PDF/pub/UvolfactEB0208.pdf

Published

2015-10-16

How to Cite

Корчуганова, Е. Н., Танцюра, Э. В., Абузарова, К. Р., & Пригородов, П. В. (2015). Study of the urea hydrolysis kinetics in the precipitation conditions of hydroxides and metal salts. Eastern-European Journal of Enterprise Technologies, 5(6(77), 53–57. https://doi.org/10.15587/1729-4061.2015.51057

Issue

Section

Technology organic and inorganic substances