Development of a stopping rule of clustering performance by using the connected acyclic graph

Authors

  • Volodymyr Mosorov Lodz University of Technology 18\22 Stefanowskiego str., Lodz, Poland, 90-924, Poland
  • Taras Panskyi Lodz University of Technology 18\22 Stefanowskiego str., Lodz, Poland, 90-924, Poland
  • Sebastian Biedron Lodz University of Technology 18\22 Stefanowskiego str., Lodz, Poland, 90-924, Poland

DOI:

https://doi.org/10.15587/1729-4061.2015.51090

Keywords:

initial clustering, preclustering algorithm, stopping rule, connected acyclic graph, cluster

Abstract

In this article the technique of the analysis of a stopping rule for the data preclustering algorithm without the prior information about the number of clusters with the use of a connected acyclic graph is introduced. The connected acyclic graph (tree) makes it possible to represent the interconnection between the objects in input data. The stopping rule allows a halt at the some step assuming that further clusterization will not cause finding new clusters. The core of the analysis was the application of the preclustering algorithm and the stopping rule to the series of input data which were represented by sample cases of input data. Sample cases were input data with normal distribution law which belonged either to a single group or to many groups. The analysis has shown the advantages of the stopping rule for the data preclustering algorithm.

Author Biographies

Volodymyr Mosorov, Lodz University of Technology 18\22 Stefanowskiego str., Lodz, Poland, 90-924

Doctor of Technical Sciences

Institute of Applied Computer Science

Taras Panskyi, Lodz University of Technology 18\22 Stefanowskiego str., Lodz, Poland, 90-924

Postgraduate student

Institute of Applied Computer Science

Sebastian Biedron, Lodz University of Technology 18\22 Stefanowskiego str., Lodz, Poland, 90-924

Postgraduate student

Institute of Applied Computer Science

References

  1. Bailey, K. (1994). Numerical Taxonomy and Cluster Analysis. Typologies and Taxonomies, 36. doi: 10.4135/9781412986397.n3
  2. Jain, A. K., Murthy, M. N., Flynn, P. J. (1999). Data Clustering: A Review. ACM Computing Reviews, 69.
  3. Aggarwal, C. C. (2013). Data Clustering: Algorithms and Applications 1st Edition. Chapman & Hall, 652.
  4. Illumina (2015). Diagnosing and Preventing Flow Cell Overclustering on the MiSeq® System, 10.
  5. Hofmann, M., Klinkenberg, R. (2013). RapidMiner: Data Mining Use Cases and Business Analytics Applications. Chapman & Hall/CRC, 431.
  6. Kovács, F., Legány, C., Babos, A. (2006). Cluster Validity Measurement Techniques. Proceeding AIKED’06 Proceedings of the 5th WSEAS International Conference on Artificial Intelligence, Knowledge Engineering and Data Bases.
  7. Rendón, E., Abundez, I., Arizmendi, A., Quiroz, I. M. (2011). Internal versus External cluster validation indexes. International journal of computers and communications, 1 (5), 25–34.
  8. Liu, Y., Li, Z., Xiong, H., Gao, X., Wu, J. (2010). Understanding of Internal Clustering Validation Measures. IEEE International Conference on Data Mining, 911–916. doi: 10.1109/icdm.2010.35
  9. Rokach, L., Maimon, L. O. (2005). Clustering Methods. Data Mining and Knowledge Discovery Handbook, 321–352. doi: 10.1007/0-387-25465-x_15
  10. Jain, A. K., Dubes, R. C. (1988). Algorithms for clustering data. Prentice Hall, 320.
  11. Gan, G., Ma, C., Wu, J. (2007). Data Clustering: Theory, Algorithms and Applications. ASA-SIAM Series on Statistics and Applied Probability, 466.
  12. Mosorov, V., Tomczak, L. (2014). Image Texture Defect Detection Method Using Fuzzy C-Means Clustering for Visual Inspection Systems. Arabian Journal for Science and Engineering, 39 (4), 3013–3022. doi: 10.1007/s13369-013-0920-7
  13. Qian, W., Zhou, A. (2002). Analyzing popular clustering algorithms from different viewpoints. Journal of Software, 13 (18), 1383–1394.

Downloads

Published

2015-10-20

How to Cite

Mosorov, V., Panskyi, T., & Biedron, S. (2015). Development of a stopping rule of clustering performance by using the connected acyclic graph. Eastern-European Journal of Enterprise Technologies, 5(9(77), 24–30. https://doi.org/10.15587/1729-4061.2015.51090

Issue

Section

Information and controlling system