A software and hardware system for studying the function of ostiomeatal complex

Authors

  • Андрей Леонидович Ерохин Kharkiv National University of Radio Electronics Lenina 16, Kharkov, Ukraine, 61166, Ukraine
  • Алина Сергеевна Нечипоренко Kharkiv National University of Radio Electronics 16 Lenina ave., Kharkov, Ukraine, 61166, Ukraine https://orcid.org/0000-0002-4501-7426
  • Елена Вячеславовна Линник Kharkiv National University of Radio Electronics 16 Lenina ave., Kharkov, Ukraine, 61166, Ukraine https://orcid.org/0000-0002-4906-3796
  • Дмитрий Сергеевич Суверов Kharkiv National University of Radio Electronics 16 Lenina ave., Kharkov, Ukraine, 61166, Ukraine https://orcid.org/0000-0003-3638-1944

DOI:

https://doi.org/10.15587/1729-4061.2015.51217

Keywords:

differential pressure, ostiomeatal complex, expanded uncertainty

Abstract

Numerous studies are devoted to the behavior of pressure in the maxillary sinus, although most of the researchers focus on the patency of the maxillary junction in identifying the indications for surgery or in measuring the dynamics of treatment. In all cases, characteristics of the pressure in the maxillary sinus were recorded with standard rhinomanometric equipment as well as rhinometric, sinusmetric and pneumometric devices.

Within recent years, researchers have improved technical tools for high-accuracy recording of biomedical signals, which allows a new-level study of the dynamics of air pressure in the maxillary sinus.

The paper presents a hardware and software system for researching the function of ostiomeatal complex. The system provides simultaneous measurement of differential pressure signals in the maxillary sinus and the nasal cavity, which ensures an objective assessment of the maxillary sinus function and ostiomeatal complex structures. Accuracy of the measurements is assessed through calculation of uncertainty, whereas the method of reduction improves reliability of indirect correlated measurements and veracity of the uncertainty assessment. The devised approach can improve the efficiency of diagnosing ENT diseases.

Author Biographies

Андрей Леонидович Ерохин, Kharkiv National University of Radio Electronics Lenina 16, Kharkov, Ukraine, 61166

Professor

Department of software engineering

Алина Сергеевна Нечипоренко, Kharkiv National University of Radio Electronics 16 Lenina ave., Kharkov, Ukraine, 61166

Associate professor

Biomedical Engineering Department

Елена Вячеславовна Линник, Kharkiv National University of Radio Electronics 16 Lenina ave., Kharkov, Ukraine, 61166

Associate professor

Biomedical Engineering Department

Vice-dean of Electronic Engineering Faculty 

Дмитрий Сергеевич Суверов, Kharkiv National University of Radio Electronics 16 Lenina ave., Kharkov, Ukraine, 61166

Biomedical Engineering Department

References

  1. Onodi, A. (1922). Die topographische Anatomic der Nasenhohle und ihrerNebenhohlen. Handbuch der speziellenchirurgie der Ohren und der oberen Luftwege, 3 (12), 61–134.
  2. Messerklinger, W. (1970). Die Endoskopie der Nose. Ohrenheilk, 104 (10), 451–455.
  3. Stamberger, H. (1991). Functional endoscopic sinus. Philadelphia: B. C. Decker, 324.
  4. Piskunov, S. Z., Zavyalov, F. N., Guryev, I. S., Piskunov, V. S. (1999). Features of the pathological process in the paranasal sinuses, depending on the location and size of fistula. Russian Rhinology, 2, 16–19.
  5. Ismail, H. F., Osman, E. A. A. A., AL-Omari, A. K., Avrunin, O. G. (2012). The Role of Paranasal Sinuses in the Aerodynamics of the Nasal Cavities. International Journal of Life Science and Medical Research, 2 (3), 52–55. doi: 10.5963/lsmr0203004
  6. Kutluhan, A., Salvız, M., Bozdemir, K., Kanbak, O., Ulu, M., Yalciner, A. S. (2011). Bilgen The effects of uncinectomy and natural ostial dilatationon maxillary sinus ventilation: a clinical experimental study. Eur Arch Otorhinolaryngol, 268, 569–573.
  7. Xiong, G., Zhan, J., Zuo, K., Li, J., Rong, L., Xu, G. (2008). Numerical flow simulation in the post-endoscopic sinus surgery nasal cavity. Medical & Biological Engineering & Computing, 46 (11), 1161–1167. doi: 10.1007/s11517-008-0384-1
  8. Antusheva, I. A. (2006). The aerodynamic performance of acute and chronic rhinosinusitis. Sankt-Peterburg, 148.
  9. Kyselev, A. S., Gerasimov, К. V. (1990). Device for rhinomanometry in sinuses. Journal of Ear, Nose and Throat Diseases, 5, 76–77.
  10. Garyuk, О., Merkulov, A., Nechyporenko, A., Novak, A. (2013) Behavior of the air pressure in the maxillary sinus in normal. The international scientific and practical journal "Otolaryngology. Eastern Europe", 3 (12), 23–27.
  11. Zakharov, I., Klimova, K., Volkov, O., Zharko, Yu. (2014). Evaluation of measurement uncertainty for the differential function. Metrology and devices, 1 (45), 78–80.
  12. Guide to the Expression of Uncertainty in Measurement (1995). Geneva: ISO, First Edition, 101.
  13. Yerokhin, A., Zakharov, I., Nechyporenko, A., Garyuk, О. (2014). Hardware-software complex for biomedical measurement of differential pressure in the maxillary sinus. Proceedings of the national scientific symposium with international participation, 24, 290–294.

Published

2015-10-20

How to Cite

Ерохин, А. Л., Нечипоренко, А. С., Линник, Е. В., & Суверов, Д. С. (2015). A software and hardware system for studying the function of ostiomeatal complex. Eastern-European Journal of Enterprise Technologies, 5(9(77), 9–13. https://doi.org/10.15587/1729-4061.2015.51217

Issue

Section

Information and controlling system