Analysis of features of the deformation of auxetic beryllium

Authors

  • Михаил Николаевич Гунько Yurіy Fedkovych Chernіvtsi natіonal unіversity 2 Kotsyubynskogo str., Chernivtsi, Ukraine, 58012, Ukraine https://orcid.org/0000-0003-1730-4169
  • Алла Васильевна Олейнич-Лысюк Yurіy Fedkovych Chernіvtsi natіonal unіversity 2 Kotsyubynskogo str., Chernivtsi, Ukraine, 58012, Ukraine https://orcid.org/0000-0003-1667-8046
  • Николай Дмитриевич Раранский Yurіy Fedkovych Chernіvtsi natіonal unіversity 2 Kotsyubynskogo str., Chernivtsi, Ukraine, 58012, Ukraine https://orcid.org/0000-0002-9750-4277
  • Александр Юрьевич Тащук Yurіy Fedkovych Chernіvtsi natіonal unіversity 2 Kotsyubynskogo str., Chernivtsi, Ukraine, 58012, Ukraine https://orcid.org/0000-0002-2724-8853

DOI:

https://doi.org/10.15587/1729-4061.2015.51339

Keywords:

axial, non-axial auxeticity, Peierls energy, edge, screw dislocations, internal friction

Abstract

In the framework of the linear elasticity theory using the experimentally obtained elastic stiffness modules, temperature dependences of the elastic compliance modules and tensor components of Poisson's ratios    of beryllium in a wide range of temperatures and directions in the crystal lattice were calculated, and it was shown that with increasing temperature, the value and signs of Poisson's ratios  change differently in various temperature intervals. In the interval 0-300K,  become negative in the direction [101] (non-axial auxetic). Under the change in temperature from 300 to 400 K,  are positive in all directions in the crystal (not-auxetic state). Increase in the temperature from 400 K leads to negative values of  in the directions [100], [010] and [001] (axial auxetic). Under the temperature above 473 K up to 600 K,  are negative in the entire temperature range (full auxetic). The calculations are visualized by building sections of     in the space of Euler angles by the plane (001), and by building the indicative surfaces of  in the crystallographic coordinate system at different temperatures. Taking into account the influence of the value and sign of Poisson's ratios on the processes of microplastic deformation in Be, in particular on the movement of dislocations and their interaction with the dislocation atmospheres has allowed to explain the experimentally observed anomaly of amplitude dependences of internal friction in beryllium at a temperature increase in the range from 298 to 523 K.

Author Biographies

Михаил Николаевич Гунько, Yurіy Fedkovych Chernіvtsi natіonal unіversity 2 Kotsyubynskogo str., Chernivtsi, Ukraine, 58012

Postgraduate student

Department of Solid State Physics

Алла Васильевна Олейнич-Лысюк, Yurіy Fedkovych Chernіvtsi natіonal unіversity 2 Kotsyubynskogo str., Chernivtsi, Ukraine, 58012

Associate Professor, Candidate of physical and mathematical sciences

Department of Solid State Physics 

Николай Дмитриевич Раранский, Yurіy Fedkovych Chernіvtsi natіonal unіversity 2 Kotsyubynskogo str., Chernivtsi, Ukraine, 58012

Professor, Doctor of physical and mathematical sciences.

Department of Solid State Physics

Александр Юрьевич Тащук, Yurіy Fedkovych Chernіvtsi natіonal unіversity 2 Kotsyubynskogo str., Chernivtsi, Ukraine, 58012

Postgraduate student

Department of Solid State Physics

References

  1. Konyok, D., Pleskachevsky, Y., Wojciechowsk, K. (2004). Materialy s otrizatelnym koefiziyentom Puassona: Mehanika kompozitnyh materialiv i konstrukzij, 1, 35.
  2. Goldstein, R., Gorodtsov, V., Lisovenko, D. (2010). Aukseticheskaya mehanika kristalicheskih mateialov: Izv. RAN. MTT, 4, 43.
  3. Li, Y. (1976). The anisotropic of Poisson Ratio, Yang’s Moduls, and Shear Moduls in Hexagonal Materials. Physica Status Solidi (a), 38 (1), 171–175. doi: 10.1002/pssa.2210380119
  4. Papirov, I., Ivanzov, V., Nicolayenco, А., Chokurov, V., Tuzov, Y. (2015). Isledovanie mikroplasticheskoi ltformazii berilliya. VANT, 96 (2), 158–165.
  5. Bashmacov, V., Chicova, T. (2001). Plastificaziya i uprochneniye metalicheskih kristalov pri mehanichescom dvoinicovaniye. Minsk: Tehnoprint, 218.
  6. Kardechev, B., Kupriyanov, I. (2011). Upruhie micro- i macroplastichescie svoistva policristalichescoho berilliya. FTT, 53 (12), 2356–2361.
  7. Papirov, I., Tihinsky G. (1968). Fizicheski metalovedenii berillsya. Мoscow: Atomizdat, 452.
  8. Rowlands, W. D., White, J. S. (1972). The determination of the elastic constants of beryllium in the temperature range 25 to 300 ℃. Journal of Physics F: Metal Physics, 2 (2), 231–236. doi: 10.1088/0305-4608/2/2/011
  9. Goldstein, R.,. Gorodtsov, V., Lisovenko, D. (2013). Sredniy koefizient Puassona dlya kristalov. Hexahonalni auxetiki: Pisma o materialah, 3, 7–13.
  10. Sirotin, N., Shaskol'skaya, M. (1979). Osnovy kristalohafi. Мoscow: Nauka, 639.
  11. Raransky, M., Balazyuk, V., Gun'ko M., (2015). Auxetychni vlastyvjsti krystaliv hexahonalnoyi synhoniyi: Fizika і himiya tverdoho tela, 16 (1), 34–43.
  12. Hirt, J., Lothe, J.; Nadhorniy, E., Osipyan, Yu. (Eds.) (1972).Teoriya dislocazyu. Moscow: Atomizdat, 600.
  13. Postnicov, V. (1974). Vnutrenee trenie v metalah. Moscow: Metalurhiya, 352.

Published

2015-10-24

How to Cite

Гунько, М. Н., Олейнич-Лысюк, А. В., Раранский, Н. Д., & Тащук, А. Ю. (2015). Analysis of features of the deformation of auxetic beryllium. Eastern-European Journal of Enterprise Technologies, 5(5(77), 13–17. https://doi.org/10.15587/1729-4061.2015.51339