Experimental study on antiwear properties for blends of jet fuel with bio-components derived from rapeseed oil

Authors

DOI:

https://doi.org/10.15587/1729-4061.2015.51682

Keywords:

jet fuel, alternative fuel, biocomponent, lubricity, wearing, viscosity, scuffing load

Abstract

Antiwear properties of jet fuel, two kinds of biocomponents derived from rapeseed oil and their mixtures were investigated experimentally. Antiwear properties were estimated by the value of the scuffing load and the limiting load of scuffing applied to the friction pair working in a fuel medium. Biocomponents, mainly rapeseed oil FAME and rapeseed oil FAME modified via vacuum distillation were used during the study. It is found that lubricity of biocomponents is significantly higher comparing to conventional jet fuel. It is explained by the chemical composition of FAME: highly polarity of molecules stipulate their good adsorption at the surface of friction pair. High viscosity of biocomponents due to chemical structure positively influence on their lubricity. Adding biocomponents into jet fuel results in strengthening of boundary film and thus improves antiwear properties of fuel blends. It is determined that FAME modified via vacuum distillation possesses better lubricating ability comparing to standard FAME derived from rapeseed oil. Correlation between viscosity and lubricity of fuel is shown.

Author Biographies

Anna Iakovlieva, National aviation university 1 Kosmonavta Komarova ave., Kyiv, Ukraine, 03058

Assisstant

Ecology department

Sergii Boichenko, Rzeszow university of technology 8 Povstancov Warshavy ave., Rzeszow, Poland, 35-959

Doctor of Technical Sciences, professor

Department of internal combustion engines and transport

Oksana Vovk, National aviation university 1 Kosmonavta Komarova ave., Kyiv, Ukraine, 03058

Doctor of Sciences, associate professor

Ecology department

Lejda Kazimierz, Rzeszow university of technology 8 Povstancov Warshavy ave., Rzeszow, Poland, 35-959

Doctor of Sciences, professor

Department of internal combustion engines and transport

Hubert Kuszewski, Rzeszow university of technology 8 Povstancov Warshavy ave., Rzeszow, Poland, 35-959

PhD, associate professor

Department of internal combustion engines and transport

Miroslaw Jakubowski, Rzeszow university of technology 8 Povstancov Warshavy ave., Rzeszow, Poland, 35-959

PhD, associate professor

Department of internal combustion engines and transport

References

  1. Kandaramath Hari, T., Yaakob, Z., Binitha, N. N. (2015). Aviation biofuel from renewable resources: Routes, opportunities and challenges. Renewable and Sustainable Energy Reviews, 42, 1234–1244. doi: 10.1016/j.rser.2014.10.095
  2. Maurice, L. Q., Lander, H., Edwards, T., Harrison, W. . (2001). Advanced aviation fuels: a look ahead via a historical perspective. Fuel, 80 (5), 747–756. doi: 10.1016/s0016-2361(00)00142-3
  3. Liu, G., Yan, B., Chen, G. (2013). Technical review on jet fuel production. Renewable and Sustainable Energy Reviews, 25, 59–70. doi: 10.1016/j.rser.2013.03.025
  4. Hileman, J. I., Stratton, R. W. (2014). Alternative jet fuel feasibility. Transport Policy, 34, 52–62. doi: 10.1016/j.tranpol.2014.02.018
  5. Jenkins, R. W., Munro, M., Nash, S., Chuck, C. J. (2013). Potential renewable oxygenated biofuels for the aviation and road transport sectors. Fuel, 103, 593–599. doi: 10.1016/j.fuel.2012.08.019
  6. Hong, T. D., Soerawidjaja, T. H., Reksowardojo, I. K., Fujita, O., Duniani, Z., Pham, M. X. (2013). A study on developing aviation biofuel for the Tropics: Production process – Experimental and theoretical evaluation of their blends with fossil kerosene. Chemical Engineering and Processing: Process Intensification, 74, 124–130. doi: 10.1016/j.cep.2013.09.013
  7. Chuck, C. J., Donnelly, J. (2014). The compatibility of potential bioderived fuels with Jet A-1 aviation kerosene. Applied Energy, 118, 83–91. doi: 10.1016/j.apenergy.2013.12.019
  8. Lapuerta, M., Rodríguez-Fernández, J., Estevez, C., Bayarri, N. (2015). Properties of fatty acid glycerol formal ester (FAGE) for use as a component in blends for diesel engines. Biomass and Bioenergy, 76, 130–140. doi: 10.1016/j.biombioe.2015.03.008
  9. Alves, S. M., Barros, B. S., Trajano, M. F., Ribeiro, K. S. B., Moura, E. (2013). Tribological behavior of vegetable oil-based lubricants with nanoparticles of oxides in boundary lubrication conditions. Tribology International, 65, 28–36. doi: 10.1016/j.triboint.2013.03.027
  10. Iakovlieva, A. V., Boichenko, S. V., Vovk, O. O. (2015). Patent of Ukraine No. 95751. Method of jet fuels component production from plant feedstock. Registered on 12.01.2015.
  11. Kallio, P., Pásztor, A., Akhtar, M. K., Jones, P. R. (2014). Renewable jet fuel. Current Opinion in Biotechnology, 26, 50–55. doi: 10.1016/j.copbio.2013.09.006
  12. Hu J., Du Z., Li C., Min E. (2005). Study on the lubrication properties of biodiesel as fuel lubricity enhancers. Fuel, 84, 1601–1606. doi: 10.1016/j.fuel.2005.02.009
  13. Maru, M. M., Trommer, R. M., Cavalcanti, K. F., Figueiredo, E. S., Silva, R. F., Achete, C. A. (2014). The Stribeck curve as a suitable characterization method of the lubricity of biodiesel and diesel blends. Energy, 69, 673–681. doi: 10.1016/j.energy.2014.03.063
  14. Xu, Y., Wang, Q., Hu, X., Li, C., Zhu, X. (2010). Characterization of the lubricity of bio-oil/diesel fuel blends by high frequency reciprocating test rig. Energy, 35 (1), 283–287. doi: 10.1016/j.energy.2009.09.020
  15. Devyanin, S. N., Markov, V. A., Semenov, V. G. (2007). Rastitelyie masla i topliva dlya dizelnikh dvigatelei. Kharkiv: Novoe Slovo.
  16. Agarwal, S., Chhibber, V. K., Bhatnagar, A. K. (2013). Tribological behavior of diesel fuels and the effect of anti-wear additives. Fuel, 106, 21–29. doi: 10.1016/j.fuel.2012.10.060
  17. Geller, D. P., Goodrum, J. W. (2004). Effects of specific fatty acid methyl esters on diesel fuel lubricity. Fuel, 83 (17-18), 2351–2356. doi: 10.1016/j.fuel.2004.06.00
  18. Aviation Turbine Fuel Lubricity – A Review (2014). CRC Report AV-14-11. Coordinating Research Council, Inc.
  19. Yanovskii, L., Dubovkin, N., Galimov, F. et. al. (2005). Inzhenernyie osnovy aviatsionnoi khimmotologii. Kazan: Izdatelstvo Kazanskogo Universiteta.
  20. Dubovkin, I., Yanovskyi, L. Shigabaev, T., Galimov, F., Ivanov, V. (2000). Inzhenernyie metody analiza fiziko-khimicheskikh i ekspluatatsionnykh svoistv topliv. Kazan: Master-line.
  21. T-02U (2011). Universal Four-Ball Testing Machine – user manual. Radom: Institute for Sustainable Technologies – National Research Institute.
  22. Szczerek, M., Tuszyсski, W. (2000). Tribological researches – scuffing. Radom: Institute for Sustainable Technologies – National Research Institute.
  23. Piliavskyi, V., Polunkin, E., Gaidai, O. (2013). Improvement of lubricating properties of ethanol motor fuels. Proceedings of the 2-d All-Ukrainian ecological conference, 46–50.
  24. Anastopoulos, G., Lois, E., Zannikos, F., Kalligeros, S., Teas, C. (2002). HFRR lubricity response of an additized aviation kerosene for use in CI engines. Tribology International, 35 (9), 599–604. doi: 10.1016/s0301-679x(02)00050-6
  25. Yanovskii, L., Dmitrenko, V., Dubovkin, N. et. al. (2005). Osnovy aviatsionnoi khimmotologii. Moscow: MATI, 678.
  26. Nagornov, S. A., Dvoreckyi, D. S., Romancova, S. V., Tarov, V. P. (2010). Tekhnika i tekhnologii proizvodstva i pererabotki rastitelnyh masel. Tambov: Izdatelstvo TGTU, 96.
  27. Sarin, R., Kumar, R., Srivastav, B., Puri, S. K., Tuli, D. K., Malhotra, R. K., Kumar, A. (2009). Biodiesel surrogates: Achieving performance demands. Bioresource Technology, 100 (12), 3022–3028. doi: 10.1016/j.biortech.2009.01.032

Downloads

Published

2015-10-30

How to Cite

Iakovlieva, A., Boichenko, S., Vovk, O., Kazimierz, L., Kuszewski, H., & Jakubowski, M. (2015). Experimental study on antiwear properties for blends of jet fuel with bio-components derived from rapeseed oil. Eastern-European Journal of Enterprise Technologies, 5(8(77), 20–28. https://doi.org/10.15587/1729-4061.2015.51682

Issue

Section

Energy-saving technologies and equipment