Development of telemedicine system for remote monitoring of heart activity based on fasegraphy method

Authors

  • Леонид Соломонович Файнзильберг International Research and Training Center for Information Technology and Systems, NAS and MES of Ukraine Av. Glushkov, 40, Kyiv, Ukraine, 03680, Ukraine https://orcid.org/0000-0002-3092-0794
  • Татьяна Викторовна Сорока National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremogy Av, 37, Solomenskiy district, m. Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-6661-1651

DOI:

https://doi.org/10.15587/1729-4061.2015.55004

Keywords:

telemedicine system, remote ECG analysis, fasegraphy method, ECG compression methods

Abstract

A client-server system telemedicine for remote processing of electrocardiograms was proposed. In contrast to the known, the system allows to simplify the heart activity monitoring procedure using the original ECG sensor with finger electrodes and the innovative method of ECG processing in the phase space (fasegraphy method).
It is shown that the fasegraphy method allows to improve the estimation accuracy of the reference ECG cycle in the time domain, more clearly display traditional diagnostic indicators in the phase space and introduce a system of additional diagnostic features.
The peculiarity of the system lies also in using the original method of economical signal encoding, which provides a high degree of signal compression on the client side and accurate information reproduction on the server side.
The proposed telemedicine system allows a family doctor to remotely monitor the patient, based on the analysis of the current measurement by the fasegraphy method and personalized norms of a particular patient, which is automatically calculated based on the accumulated data array.

Author Biographies

Леонид Соломонович Файнзильберг, International Research and Training Center for Information Technology and Systems, NAS and MES of Ukraine Av. Glushkov, 40, Kyiv, Ukraine, 03680

Doctor of Sciences (Tech)

Chief researcher  

Татьяна Викторовна Сорока, National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremogy Av, 37, Solomenskiy district, m. Kyiv, Ukraine, 03056

Master student

Department of Biosafety and Reconstructive bioengineering

References

  1. Hozhenko A., Kulbida M., Kochet O. (2011). Profilaktychna stratehiia medychnoi nauky – shliakh do pidvyshchennia efektyvnosti okhorony zdorovia. Visnyk NAN Ukrainy, 12, 64–69.
  2. Goernig, M., Kwetkat, A., Brehm, B., Fidorra, K., Roth, A., Figulla, H. R., Leder, U. (2009). Feasibility and effectiveness of home care telemedicine in patients with heart failure in Thuringia. World Congress on Medical Physics and Biomedical Engineering. Munich, Germany, 79–81. doi: 10.1007/978-3-642-03904-1_21
  3. Zugck, C., Frankenstein, L., Nelles, M., Froehlich, H., Schellberg, D., Cebola, R. et al. (2008). Telemedicine reduces hospitalisation rates in patients with chronic heart failure - results of the randomized HiTel trial. European Journal of Heart Failure Supplements, 7, 9. doi: 10.1016/s1567-4215(08)60024-7
  4. Molinari, G., Reboa, G., Frascio, M., Leoncini, M., Rolandi, A., Balzan, C. et al. (2002). The role of telecardiology in supporting the decision-making process of general practitioners during the management of patients with suspected cardiac events. Journal of Telemedicine and Telecare, 8 (2), 97–101. doi: 10.1258/1357633021937541
  5. Pentti, M. R., Calhoun, H. P., Chaitman, B. R. (2011). NOVA CODE serial ECG classification system for clinical trials and epidemiologic studies. International Journal of Electronic Engineering Research, 9, 179–187.
  6. Antoshkin S. A. (2006). Programmno-algoritmicheskoe obespechenie szhatija i vosstanovlenija signalov v sistemah obrabotki informacii pri znachitel'nyh ogranichenijah na resursy na primere obrabotki kardiosignala. Moskovskij aviacionnyj institut. Moscow, 121.
  7. Saini, I. (2013). Analysis ECG data compression techniques- a survey approach. International Journal of Emerging Technology and Advanced Engineering Certified Journal, 2, 544–548.
  8. Cox, J. R., Nolle, F. M., Fozzard, H. A., Oliver, G. C. (1968). AZTEC, a preprocessing program for real-time ECG rhythm analysis. IEEE Transactions on Biomedical Engineering, BME-15 (2), 128–129. doi: 10.1109/tbme.1968.4502549
  9. Abenstein, J. P., Tompkins, W. J. (1982). New data-reduction algorithm for real-time ECG analysis. IEEE Transactions on Biomedical Engineering, BME-29 (1), 43–48. doi: 10.1109/tbme.1982.324962
  10. Sklansky, J., Gonalez, V. (1980). Fast polygonal approximation of digitized curves. Pattern Recognition, 12 (5), 327–331. doi: 10.1016/0031-3203(80)90031-x
  11. Tai, S. C. (1991). SLOPE- A real time ECG data compressor. Medical and Biological Engineering and Computing, 29 (2), 175–179. doi: 10.1007/bf02447104
  12. Stewart, D., Dower, G. E., Suranyi, O. (1973). An ECG compression code. Journal of Electrocardiology, 6 (2), 175–176. doi: 10.1016/s0022-0736(73)80013-5
  13. Kuklinski, W. S. (1983). Fast Walsh transform data-compression algorithm; ECG applications. Medical and Biological Engineering and Computing, 21 (4), 465–472. doi: 10.1007/bf02442635
  14. Nave, G., Cohen, A. (1993). ECG compression using long-term prediction. IEEE Transactions on Biomedical Engineering, 40 (9), 877–885. doi: 10.1109/10.245608
  15. Reddy, B. R. S., Murthy, I. S. N. (1986). ECG data compression using Fourier descriptors. IEEE Transactions on Biomedical Engineering, BME-33 (4), 428–434. doi: 10.1109/tbme.1986.325799
  16. Lu, Z., Kim, D. Y., Pearlman, W. A. (2000). Wavelet compression of ECG signals by the set partitioning in hierarchical trees (SPIHT) algorithm. IEEE Transactions on Biomedical Engineering, 47 (7), 849–856. doi: 10.1109/10.846678
  17. Khudiakova, L. A., Shuliak, V. A. (2009). Primenenie standartov peredachi medicinskih dannyh v telemedicinskih sistemah. Jelektronika i svjaz'. Tematicheskij vypusk «Jelektronika i nanotehnologii», 2, 203–205.
  18. A. Plotnikov, D. Priluckij, S. Selishhev. (1999). Standart SCP-ECG dlja obmena cifrovymi JeKG. Medicinskaja tehnika, 3, 19–26.
  19. Lourenço, A., Silva, H., Fred, A. (2011). Unveiling the Biometrical Potential of Finger-Based ECG Signals. Computational Intelligence and Neuroscience, 2011, 1–8. doi: 10.1155/2011/720971
  20. Fainzilberg, L. (2013). Komp'juternaja diagnostika po fazovomu portretu jelektrokardiogrammy. Kiev: Osvita Ukrainy, 191.
  21. Fainzilberg, L. (2008). Informacionnye tehnologii obrabotki signalov slozhnoj formy. Teorija i praktika. Kiev: Naukova Dumka, 333.
  22. Fainzilberg, L. (2010). FAZAGRAF® – jeffektivnaja informacionnaja tehnologija obrabotki JeKG v zadache skrininga ishemicheskoj bolezni serdca. Klinicheskaja informatika i telemedicina, 6 (7), 22–30.
  23. Fainzilberg, L. (2015). Obobshhennyj metod obrabotki ciklicheskih signalov slozhnoj formy v mnogomernom prostranstve parametrov. Problemy upravlenija i informatiki, 2, 58–71.

Published

2015-12-25

How to Cite

Файнзильберг, Л. С., & Сорока, Т. В. (2015). Development of telemedicine system for remote monitoring of heart activity based on fasegraphy method. Eastern-European Journal of Enterprise Technologies, 6(9(78), 37–46. https://doi.org/10.15587/1729-4061.2015.55004

Issue

Section

Information and controlling system