Research problem statement of links prediction in phone networks traffics

Authors

  • Олег Олегович Савельєв Institute of Informatics and Artificial Intelligence Donetsk National Technical University Bohdana Khmel'nyts'koho 84, Donetsk, Ukraine, 83050, Ukraine
  • Анатолій Іванович Шевченко Institute of Informatics and Artificial Intelligence Donetsk National Technical University Bohdana Khmel'nyts'koho 84, Donetsk, Ukraine, 83050, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2012.5532

Keywords:

Telephone network traffic, communications prediction, dynamic graph, discovery of knowledge

Abstract

The article concerns the process of analyzing the traffics  of telephone networks in intelligence decision-making support systems (IDMSS). The main objective of the study is to select the new unexplored problem, the solution of which can be expressed as models, methods and algorithms of IDMSS. The review of existing works on the proble- ms of the subject area has made it possible to select the problem of communication prediction. This article provides a formal statement of the problem, where the social network is designed by the dynamic graph, each state of which is a snapshot of the network. The solution of the problem is expressed in the form of the following condition for the initial dynamic graph. There are separated, independent components of the problem – the prediction of temporary and new communications. The analysis of existing methods of problems solution showed the inadequate designing of methods for the temporary communications prediction. We propose a novel approach to its solution, based on the detection of knowledge about the rules of transition and following of states of dynamic graph, using the clusteri- ng techniques, sequential analysis, and decision trees. The discovered knowledge will allow prediction as a logical conclusion of future state. The results can be implemented as a separate module of IDMSS, which is intended for use by researchers of social networks, employees of law-enforcement  agencies while investigating offenses.  There is a necessity of experimental verification of the suggested approach

Author Biographies

Олег Олегович Савельєв, Institute of Informatics and Artificial Intelligence Donetsk National Technical University Bohdana Khmel'nyts'koho 84, Donetsk, Ukraine, 83050

PhD student

Department of intelligent systems software

Анатолій Іванович Шевченко, Institute of Informatics and Artificial Intelligence Donetsk National Technical University Bohdana Khmel'nyts'koho 84, Donetsk, Ukraine, 83050

Member of the National Academy of Sciences of Ukraine, doctor of technical sciences, professor, head of department

Department of intelligent systems software

References

  1. Васильев, А. В. Применение алгоритмов кластеризации и классификации в задачах обработки и интерпретации телеметрической информации [Текст] / Васильев В. А., Геппенер В. В, Жукова Н. А., Клионский Д. М., Тристанов А. Б. // Доклады 9-й международной конференции «Цифровая обработка сигналов и ее применение», 28-30 марта 2007 г. – М : ИПУ РАН. – 2007. С. 389-392.
  2. Давыденко, В. А. Моделирование социальных сетей [Текст] / В. А. Давыденко, Г. Ф. Ромашкина, С. Н. Чуканов // Вестник Тюменского государственного университета. – 2005. – № 1. – С. 68-79.
  3. Долинина, О. Н. Модель графической визуализации динамической социальной сети с локальными ограничениями для образовательного учреждения [Текст] / Долинина О. Н., Тарасова В. В., Печенкин В. В. // Труды вольного экономического общества России. – М : Российский экономический университет им. Г. В. Плеханова. – 2010. – Т. 143. – С. 252-258.
  4. Жукова, Н. А. Методы и модели оперативного контроля состояния сложных динамических объектов на основе измерительной информации с использованием алгоритмов интеллектуального анализа данных [Текст] : автореф. дис. на соискание уч. степени канд. техн. наук : спец. 05.13.01 “Системный анализ, управление и обработка информации (технические системы)” / Жукова Наталия Александровна. – СПб., 2008. – 16 с.
  5. Кириллов, А. Н. Предсказание связности графа [Текст] / А. Н. Кириллов // Материалы XIX Международной научной конференции студентов, аспирантов и молодых ученых «Ломоносов-2012»: секция «Вычислительная математика и кибернетика», 9-13 апреля 2012 г. – М. : МГУ. – 2012. – С.101-102.
  6. Савельев, О. О. О концепции создания информационной системы интеллектуального анализа данных телекоммуникационных компаний в рамках разработки интеллектуальной системы поддержки принятия решений [Текст] / О. О. Савельев // Искусственный интеллект. – 2010. – № 3. – С. 535-539.
  7. Савельев, О. О. Построение динамического социального графа по транзакционным данным трафиков телефонных сетей [Текст] / О. О. Савельев // Матеріали доповідей VI міжнародної науково-практичної конференції молодих учених, аспірантів, студентів «Сучасна інформаційна Україна: інформатика, економіка, філософія», 26 квітня 2012 р. – Донецьк : Наука і освіта. – 2012. – С. 79-83.
  8. Соколова, А. Н. Инструменты расследования. Анализ социальных сетей [Электронный ресурс] / А. Н. Соколова. – 2011. – Режим доступа : http://www.securityinfowatch.ru/view.php?section=articles&item=3.
  9. Тарасова, В. В. Применение динамической графовой модели для построения и анализа социальной сети образовательной организации [Текст] / В. В. Тарасова // Труды XVIII Всероссийской научно-методической конференции «Телематика'2011», 20-23 июня 2011 г. – СПб : НИУ ИТМО. – 2011. С. 192-194.
  10. Bayir, M. A. Discovering Spatiotemporal Mobility Profiles of Cellphone Users [Электронный ресурс] / Murat Ali Bayir, Murat Demirbas, Nathan Eagle // Proceedings of 10th IEEE International Symposium on a “World of Wireless, Mobile and Multimedia Networks”, 15-19 June, 2009 – Kos, Greece. – 2009. – 9 pp. – Режим доступа : http://reality.media.mit.edu/pdfs/bayir.pdf.
  11. Bourqui, R. Detecting structural changes and command hierarchies in dynamic social networks [Текст] // R. Bourqui, F. Gilbert, P. Simonetto, F. Zaidi, U. Sharan, F. Jourdan // Proceedings of the 2009 International Conference on Advances in Social Network Analysis and Mining ASONAM '09, 20-22 July 2009 – Athens, Greece : IEEE Computer Society. – 2009. – PP. 83-88.
  12. Borgwardt, K. M. Pattern Mining in Frequent Dynamic Subgraphs [Текст] / Borgwardt K. M., Kriegel H.-P., Wackersreuther P. // Proceedings of the Sixth International Conference on Data Mining ICDM '06, 18-22 December 2006, Hong Kong, China. – Washington, DC, USA : IEEE Computer Society. – 2006. – PP. 818-822.
  13. Berry, M. J. A. Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management [Текст] / Michael J. A. Berry, Gordon S. Linoff. – 2nd ed. – Indianapolis : Wiley Publishing, Inc, 2004. – 643 pp.
  14. Clauset, A. Persistence and periodicity in a dynamic proximity network [Электронный ресурс] / Aaron Clauset, Nathan Eagle // DIMACS/DyDAn Workshop on Computational Methods for Dynamic Interaction Networks, September 24 - 25, 2007. – Rutgers, N.J. : DIMACS Center. – 2007. – 5 PP. – Режим доступа : http://reality.media.mit.edu/pdfs/Clauset.pdf.
  15. Cox, K. C. Visual Data Mining: Recognizing Telephone Calling Fraud [Текст] / Kenneth C. Cox, Stephen G. Eick, Graham J. Wills, Ronald J. Brachman // Data Mining and Knowledge Discovery – 1997. Volume 1, № 2. – PP. 225-231.
  16. Catanese, S. A. A Visual Tool for Forensic Analysis of Mobile Phone Traffic [Текст] / Salvatore A. Catanese, Giacomo Fiumara // Proceedings of the 2nd ACM workshop on Multimedia in forensics, security and intelligence, October 25 - 29, 2010, Firenze, Italy. – New York : ACM. – 2010. – PP. 71-76.
  17. Clauset, A. Finding community structure in very large networks [Электронный ресурс] / Aaron Clauset, M. E. J. Newman, and Cristopher Moore // Physical Review E. – 2004. Volume 70, № 6. – 6 pp. – Режим доступа : http://arxiv.org/pdf/cond-mat/0408187v2.
  18. D’yakonov, A. Two Recommendation Algorithms Based on Deformed Linear Combinations [Текст] / A. D’yakonov // Proceedings of the ECML PKDD 2011 Workshop on Discovery Challenge, September 5th, 2011, – Athens, Greece : Rudjer Boskovic Institute – 2011. – PP. 21-27.
  19. Danezis, G. Introducing Traffic Analysis [Текст] / George Danezis and Richard Clayton // Digital Privacy: Theory, Technologies, and Practices. [ed. Alessandro Acquisti]. – New York : Auerbach Publications, 2007. – PP. 95-116.
  20. Danon, L. Comparing community structure identification [Электронный ресурс] / L. Danon, A. Diaz-Guilera, J. Duch, A. Arenas // Journal of Statistical Mechanics: Theory and Experiment – 2005. – Issue 9. – 10 PP. – Режим доступа : http://deim.urv.cat/~aarenas/publicacions/pdf/jstat05.pdf.
  21. Diffie, W. Privacy on the Line: The Politics of Wiretapping and Encryption [Текст] / Whitfield Diffie, Susan Landau. – Cambridge : MIT Press, 1998. – 352 pp.
  22. De Dominico, M. Interdependence and Predictability of Human Mobility and Social Interactions [Электронный ресурс] / M. De Dominico, A. Lima, M. Musolesi // Proceedings of the Nokia Mobile Data Challenge Workshop, June 18th 2012. – Newcastle, UK : Pervasive. – 2012. – 6 PP. – Режим доступа : http://www.cs.bham.ac.uk/~musolesm/papers/mdc12.pdf.
  23. Eagle, N. Can Serendipity Be Planned? [Текст] / Nathan Eagle // MIT Sloan Management Review – 2004. – Volume 46, № 1. – PP. 10-14.
  24. Eagle, N. Using Mobile Phones to Model Complex Social Systems [Электронный ресурс] / Nathan Eagle // O'Reilly Network – 2005. – Режим доступа : http://www.oreillynet.com/pub/a/network/2005/06/20/MITmedialab.html
  25. Eberle, W. Analyzing Catalano/Vidro Social Structure Using GBAD [Электронный ресурс] / W. Eberle, L. Holder // Proceedings of IEEE Symposium on Visual Analytics Science and Technology, 19-24 October 2008. – Columbus, Ohio, USA : Eurographics Association. – 2008. – 2 PP. – Режим доступа : http://users.csc.tntech.edu/%7Eweberle/VAST2008.pdf.
  26. Eagle, N. Social Serendipity: Mobilizing Social Software [Текст] / Nathan Eagle, Alex Pentland // Pervasive Computing – 2005. Volume 4, Issue 2. – PP. 28-34.
  27. Eagle, N. Eigenbehaviors: identifying structure in routine [Текст] / Nathan Eagle, Alex Sandy Pentland // Behavioral Ecology and Sociobiology – 2009. Volume 63, Issue 7. – PP. 1057-1066.
  28. Eagle, N. Inferring friendship network structure by using mobile phone data [Текст] / N. Eagle, A. S. Pentland, D. Lazer // Proceedings of the National Academy of Sciences (PNAS) – 2009, Volume 106, № 36. – PP. 15274-15278.
  29. Farrahi, K. What Did You Do Today? Discovering Daily Routines from Large-Scale Mobile Data [Текст] / K. Farrahi, D. Gatica-Perez // Proceeding of the 16th ACM International Conference on Multimedia, October 26-31, 2008, Vancouver, Canada. – New York, NY, USA : ACM. – 2008. – PP. 849-852.
  30. Fang, C. Graph Embedding Framework for Link Prediction and Vertex Behavior Modeling in Temporal Social Networks [Электронный ресурс] / C. Fang, M. Kohram, X. Meng, A. Ralescu // Proceedings of the fifth SNA-KDD Workshop, August 21, 2011, San Diego, CA, USA. – 2011. – 7 pp. – Режим доступа : http://www.cs.uc.edu/~fangcg/Publications/FrameworkLinkPredKDDSNA20110525Final.pdf.
  31. Greene, K. Reality Mining [Электронный ресур] / Kate Greene // Technology Review – 2008. – № 2. – Режим доступа : http://www.technologyreview.com/article/409598/tr10-reality-mining/.
  32. Huang, Z. The Time Series Link Prediction Problem with Applications in Communication Surveillance [Текст] / Zan Huang, Dennis K.J. Lin // INFORMS Journal on Computing – 2009. – Volume 21, Issue 2. – PP. 286-303.
  33. Hui, P. Distributed Community Detection in Delay Tolerant Networks [Электронный ресурс] / P. Hui, E. Yoneki, S.-Y. Chan, J. Crowcroft // Proceedings of 2nd ACM/IEEE international workshop on Mobility in the evolving internet architecture, August 27, 2007, Kyoto, Japan. – New York, NY, USA : ACM – 2007. – 8 pp. – Режим доступа : http://reality.media.mit.edu/pdfs/Hui.pdf.
  34. Klerks, P. The network paradigm applied to criminal organisations [Текст] / Peter Klerks // Connections – 2001. – № 24(3). – PP. 53-65.
  35. Leskovec, J. Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations [Текст] / Jure Leskovec, Jon Kleinberg, Christos Faloutsos // Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery and data mining (KDD), August 21-24, 2005, Chicago, IL, USA. – New York : ACM. – 2005. – PP. 177-187.
  36. Liben-Nowell, D. The Link Prediction Problem for Social Networks [Текст] / D. Liben-Nowell, J. Kleinberg // Proceedings of the twelfth international conference on Information and knowledge management, November 03-08, 2003, New Orleans, LA, USA. – New York : ACM. – 2003. – PP. 556-559.
  37. Mena, J. Investigative Data Mining for Security and Criminal Detection [Текст] / Jesus Mena. – New York : Butterworth Heinemann, 2003. – 452 pp.
  38. Marketos, G. Mobility Data Warehousing and Mining [Электронный ресурс] / Gerasimos Marketos, Yannis Theodoridis // Proceedings of 35th International Conference on Very Large Data Bases PhD Workshop (VLDB’09), 24-28 August 2009, Lyon, France. – Lyon, 2009. – 6 pp. – Режим доступа : http://infolab.cs.unipi.gr/pubs/confs/VLDB09PhDWorkshop.pdf.
  39. Newman, M. E. J. Detecting community structure in networks [Текст] / M. E. J. Newman // The European Physical Journal B – Condensed Matter and Complex Systems. – 2004. – Volume 38, № 2. – PP. 321-330.
  40. Pur, A. The Telephone Traffic Data Analysis [Текст] / Aleksander Pur, Igor Belic // Proceedings of the fifth international criminal justice conference «Policing in Central and Eastern Europe: Dilemmas of Contemporary Criminal Justice», September 23-25 2004, Ljubljana, Slovenia. – Ljubljana, Slovenia : Faculty of Criminal Justice, University of Maribor – 2004. – PP. 779-784.
  41. Qiu, B. Evolution of Node Behavior in Link Prediction [Текст] / B. Qiu, Q.He, J. Yen // Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence (AAAI-11), August 7-11, 2011. – San Francisco, CA, USA : AAAI, 2011. – PP. 1810-1811.
  42. Thuraisingham, B. Web Data Mining and Applications in Business Intelligence and Counter-Terrorism [Текст] / Bhavani Thuraisingham. – New York : Auerbach Publications 2003. – 516 pp.
  43. du Toit, S. F. A Model for the Visual Data Mining of Call Patterns [Электронный ресурс] / Stephanus Francois du Toit , Andre Calitz // Proceedings of South African Telecommunications Networks and Applications Conference, 3-6 September 2006, Cape Town, South Africa. – Stellenbosch. – 2006. – 2 PP. – Режим доступа : http://coe.nmmu.ac.za/coe/media/Store/documents/Distributed%20Multimedia%20Unit/Publications/SFduToit.pdf
  44. Wasserman, S. Social Network Analysis: Methods and Applications (Structural Analysis in the Social Science) [Текст] / Stanley Wasserman, Katherine Faust. – Cambridge : Cambridge University Press, 1994. – 825 pp.

Published

2012-12-10

How to Cite

Савельєв, О. О., & Шевченко, А. І. (2012). Research problem statement of links prediction in phone networks traffics. Eastern-European Journal of Enterprise Technologies, 6(3(60), 51–60. https://doi.org/10.15587/1729-4061.2012.5532

Issue

Section

Control systems