Specification of metal damageability mechanism of long-operated steam line welds

Authors

  • Виталий Владимирович Дмитрик National Technical University "Kharkiv Polytechnic Institute" st. Frunze, 21, Kharkov, Ukraine https://orcid.org/0000-0002-6266-6081
  • Татьяна Александровна Сиренко Kharkiv Engineering College, st. Plekhanov, 79, Kharkov, Ukraine
  • Светлана Николаевна Барташ National Technical University "Kharkiv Polytechnic Institute" st. Frunze, 21, Kharkov, Ukraine
  • Алена Валериевна Глушко National Technical University "Kharkiv Polytechnic Institute" st. Frunze, 21, Kharkov, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2015.55420

Keywords:

damageability, welded joints of steam lines, micropores, microcracks, diffusion, carbide phases, lifetime

Abstract

The features of metal damageability of welded joints of steam lines, long operated under creep conditions, made of steels 15H1M1F and 12H1MF were specified. Damageability classification, consisting of five stages was proposed. The formation mechanisms of creep pores and fatigue cracks were considered. It was found that creep pores are formed most intensively in the area of incomplete recrystallization of heat-affected zone of welded joints made of heat-resistant steels.
It was revealed that the metal destruction of welded joints has predominantly brittle intergranular nature. In the destruction area, the body of α-phase grains is affected by individual or locally grouped creep pores.
It was found that the origination and development of fatigue cracks on the inner surface of steam lines have locally grouped nature. Their development is characterized by the absence of branching.
Specification of metal damageability features of long-operated welded joints of steam lines will allow to reduce the damageability intensity, which provides increased lifetime.

Author Biographies

Виталий Владимирович Дмитрик, National Technical University "Kharkiv Polytechnic Institute" st. Frunze, 21, Kharkov

Doctor of Technical Sciences, Professor, Head of Department

Major welding

Татьяна Александровна Сиренко, Kharkiv Engineering College, st. Plekhanov, 79, Kharkov

Teacher Category 1

Светлана Николаевна Барташ, National Technical University "Kharkiv Polytechnic Institute" st. Frunze, 21, Kharkov

Ph.D., Associate Professor,

Department of welding

Алена Валериевна Глушко, National Technical University "Kharkiv Polytechnic Institute" st. Frunze, 21, Kharkov

Graduate student

Department of welding

References

  1. Hromchenko, F. A. (2002). Resurs svarnyh soedinenij paroprovodov. Moscow: Mashinostroenie, 351.
  2. Kumanin, V. I., Kovaleva, L. A., Alekseev, S. V. (1988). Dolgovechnost' metalla v uslovijah polzuchesti. Moscow: Metallurgija, 224.
  3. Panasiuk, V. V. (2002). Mekhanika ruinuvannia ta mitsnosti materialiv. Kyiv: Akademperiodyka, 376.
  4. Dmitrik, V. V., Pashhenko, A. N. (2003). Umen'shenie strukturnoj neodnorodnosti uchastka nepolnoj perekristallizacii ZTV svarnjah soedinenij perlitnoj stali. Avtomaticheskaja svarka, 7, 14–18.
  5. Dmitrik, V. V., Baumer, V. N. (2007). Karbidnye fazy i povrezhdaemost' svarnyh soedinenij pri dlitel'noj jekspluatacii. Metallofizika. Noveishye tekhnolohii, 7, 937–948.
  6. Zemzin, V. N., (1972). Zharoprochnost' svarnyh soedinenij. Leningrad: Mashynostroenye, 269.
  7. Dmitrik, V. V., Sobol', O. V., Pogrebnoj, M. A., Syrenko, T. A. (2015). Osobennosti degradacii metala svarnyh soedinenij paroprovodov. Avtomaticheskaja svarka, 7, 12–17.
  8. Berezina, T. G. (1986). Strukturnyj metod opredelenija ostatochnogo resursa detalej dlitel'no rabotajushhih paroprovodov. Teploenergetika, 3, 53–56.
  9. Dmitrik, V. V., Kalinichenko, V. I. (2003). Modelirovanie processa jelektrodugovoj svarki. Izvestija vuzov. Mashinostroenie, 4, 59–64.
  10. Dmitrik, V. V., Kalinichenko, V. I. (2002). Chislennye reshenija kraevyh zadach teorii jelektrodugovoj svarki na osnove shemy Galerkina. Dopovidi natsionalnoi akademii nauk Ukrainy, 5, 101–108.
  11. Ditjaev, B. D., Popov, A. B. (2001). Raschetno-analiticheskie i metodicheskie podhody k prodleniju sroka sluzhby paroprovodov TjeS. Teploenergetika, 4, 2–8.
  12. Humphreys, F. J., Hatherly, M, (1996). Recrystallization and related annealing phenomena. Oxford: Pergamon Press, 235–279.
  13. Hald, J. (2008). Microstructure and long-term creep properties of 9–12% Cr steels. International Journal of Pressure Vessels and Piping, 85 (1-2), 30–37. doi: 10.1016/j.ijpvp.2007.06.010
  14. Sawada, K., Takeda, M., Maruyama, K., Ishii, R., Yamada, M., Nagae, Y., Komine, R. (1999). Effect of W on recovery of lath structure during creep of high chromium martensitic steels. Materials Science and Engineering: A, 267 (1), 19–25. doi: 10.1016/s0921-5093(99)00066-0
  15. Abe, F. (2004). Coarsening behavior of lath and its effect on creep rates in tempered martensitic 9Cr–W steels. Materials Science and Engineering: A, 387–389, 565–569. doi: 10.1016/j.msea.2004.01.057
  16. Dmitrik, V. V. (2013). Svarnye soedinenija paroprovodov. Kharkov: Majdan, 163.

Published

2015-12-25

How to Cite

Дмитрик, В. В., Сиренко, Т. А., Барташ, С. Н., & Глушко, А. В. (2015). Specification of metal damageability mechanism of long-operated steam line welds. Eastern-European Journal of Enterprise Technologies, 6(1(78), 13–18. https://doi.org/10.15587/1729-4061.2015.55420

Issue

Section

Mechanical engineering technology