X–ray analysis of irradiated nuclear graphite of grades ARV and MPG

Authors

  • Антон Игоревич Комир KIPT st. Akademicheskaya 1, Kharkov, Ukraine, 61108, Ukraine
  • Николай Петрович Одейчук KIPT st. Akademicheskaya 1, Kharkov, Ukraine, 61108, Ukraine
  • Алиса Александровна Николаенко KIPT st. Akademicheskaya 1, Kharkov, Ukraine, 61108, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2015.55465

Keywords:

nuclear-grade graphite, X-ray analysis, pole figures, ionizing radiation, crystal structure

Abstract

In connection with the research of structural materials for Generation IV nuclear energy systems, there is interest in increasing the accuracy of simulating the hypothetical accidents such as atmosphere entry into the core. To substantiate the possibility of using the concept of oxidation simulation by the finite element method with isotopic properties, a study of the anisotropy of the crystal structure of nuclear graphite produced by isostatic compression is needed.

X-ray analysis of nuclear-grade graphite ARV and MGP in the initial and the irradiated state is performed in the paper. Three different phases of graphite due to the method of production were identified. The influence of gamma radiation and streams of high-energy electrons on the crystal structure was examined. The issue of еру anisotropy of еру crystal structure and its change under ionizing radiation was investigated. The hypotheses of a slight anisotropy of the crystal structure of the studied graphite grades were confirmed.

Author Biographies

Антон Игоревич Комир, KIPT st. Akademicheskaya 1, Kharkov, Ukraine, 61108

PhD student, junior researcher

SPE RESST

Николай Петрович Одейчук, KIPT st. Akademicheskaya 1, Kharkov, Ukraine, 61108

Candidate of Technical Sciences. Senior Researcher.

SPE RESST

Алиса Александровна Николаенко, KIPT st. Akademicheskaya 1, Kharkov, Ukraine, 61108

Scientific secretary, junior researcher

SPE RESST

References

  1. Hodgkins, A., Marrow, T. J., Mummery, P., Marsden, B., Fok, A. (2006). X–ray tomography observation of crack propagation in nuclear graphite. Materials Science and Technology, 22 (9), 1045–1051. doi: 10.1179/174328406x114126
  2. Mostafavi, M., McDonald, S. A., Mummery, P. M., Marrow, T. J. (2013). Observation and quantification of three–dimensional crack propagation in poly–granular graphite. Engineering Fracture Mechanics, 110, 410–420. doi: 10.1016/j.engfracmech.2012.11.023
  3. Freyss, M. (2012). Multiscale modelling of nuclear fuels under irradiation. Materials innovation for nuclear optimized systems. Saclay, France.
  4. Mohamed, S. E.–G., Tournier, J.–M. P. (2012). Comparison of oxidation model predictions with gasification data of IG–110, IG–430 and NBG–25 nuclear graphite. Journal of Nuclear Materials, 420 (1–3), 141–158. doi: 10.1016/j.jnucmat.2011.09.027
  5. Gurin, V. A., Gabelkov, S. V., Poltavtsev, N. S., Gurin, I. V., Fursov S. G. (2006). The crystal structure of the catalytic pyrolytic graphite and carbon deposition. PAST. Series: Physics of radiation damages and radiation materials, 4 (89), 195–199.
  6. Karthik, C., Kane, J., Butta, D. P., Windes, W. E., Ubic, R. (2012). Microstructural characterization of next generation nuclear graphites. Microscopy and Microanalysis, 18 (02), 272–278. doi: 10.1017/s1431927611012360
  7. Zhou, Z.,. Bouwman, W. G., Schut, H., Pappas C. (2014). Interpretation of X–ray diffraction patterns of (nuclear) graphite. Carbon, 69, 17–24. doi: 10.1016/j.carbon.2013.11.032
  8. Virgil'ev, Ju. S., Selez'nev, A. N., Sviridov, A. A., Kaljagina, I. P. (2006). Reaktornyj grafit: razrabotka, proizvodstvo i svojstva. Rossijskij Himicheskij Zhurnal, 1 (1), 4–12.
  9. Zelensky, V. F., Odeychuk, N. P., Ryzhov, V. P., Borisenko, V. N., Gamow, V. O., Lyashenko, A. N., Ulybkin, A. L., Yakovlev, V. K. (2013). A study of corrosion resistance of a graphite–yield the electrons in the flow of oxygen at temperatures of 600 ... 800 C. PAST, 5 (87), 125–130.
  10. Sharov, M. K.(2014). The method of searching for optimal parameters of the function pseudo–voigt to approximate the profiles of X–ray reflexes. Vestnik of the Voronezh State University. Series: Physics. Mathematics, 2, 54–59.

Published

2015-12-25

How to Cite

Комир, А. И., Одейчук, Н. П., & Николаенко, А. А. (2015). X–ray analysis of irradiated nuclear graphite of grades ARV and MPG. Eastern-European Journal of Enterprise Technologies, 6(5(78), 12–16. https://doi.org/10.15587/1729-4061.2015.55465

Issue

Section

Applied physics