Analysis of heat transfer processes in curvilinear microchannels filled with a viscous incompressible fluid

Authors

  • Александр Андреевич Гуржий National Technical University of Ukraine “Kiev Polytechnic Institute” 37 pr. Pobedy, Kiev, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-4730-7128
  • Алексей Викторович Шалденко National Technical University of Ukraine “Kiev Polytechnic Institute” 37 pr. Pobedy, Kiev, Ukraine, 03056, Ukraine https://orcid.org/0000-0001-6730-965X

DOI:

https://doi.org/10.15587/1729-4061.2015.55508

Keywords:

Abstract

The problem of convection-diffusion heat conduction from the external environment to the curvilinear channel with a system of inserts filled with a homogeneous viscous fluid in the approximation of small Reynolds numbers is considered. A major stimulus for the research was the need for a controlled and managed heat transfer process that occurs on crystals of microprocessors and other microelectronic devices while a permanent complication of these devices and aspiration for miniaturization. The main idea of the local increase of heat flows in microchannels is associated with the possibility of forming quasi-stationary localized vortex structures in the areas adjacent to the inserts and the corners of the channel due to external pressure applied.
Mathematical formulation of the problem is described by the system of the second-order differential equations with partial derivatives in a conservative form and appropriate initial and boundary conditions. The problem is solved numerically on a uniform grid using a simple explicit upwind differencing method for solving parabolic equations (Navier-Stokes equations, heat conduction convection-diffusion equations) and the method of successive over-relaxation for solving elliptic equations (Poisson equations for the stream function and Poisson equations for pressure).
The numerical model was tested on a two-dimensional problem of homogeneous viscous fluid flow in the rectilinear channel and on a one-dimensional problem of heat conduction in a solid medium. The data of numerical experiments are in good agreement with the analytical solutions and the data published in the scientific literature.
Studies have shown that increased coolant velocity leads to higher heat flow across borders due to the formation of localized vortex structures in the corner areas of the channel. It was found that heat flows increase when introducing a system of inserts of different heights for the fluid flows with Reynolds numbers Re> 30 ... 40. The level of heat transfer in the curvilinear channel with inserts for a given fluid velocity can be increased to 60% compared with the channel without inserts by increasing the pressure difference applied to the channel input and output.
The obtained dependences and estimates of levels of heat flows can provide some support to designers and engineers in the microelectronics industry, other interested experts in the field of fluid mechanics and heating engineering.

Author Biographies

Александр Андреевич Гуржий, National Technical University of Ukraine “Kiev Polytechnic Institute” 37 pr. Pobedy, Kiev, Ukraine, 03056

Doctor of Science in Physics and Mathematics, professor

Department of Automation design of energy processes and systems

Faculty of heat power engineering

Алексей Викторович Шалденко, National Technical University of Ukraine “Kiev Polytechnic Institute” 37 pr. Pobedy, Kiev, Ukraine, 03056

PhD student

Department of Automation design of energy processes and systems

Faculty of heat power engineering

References

  1. Colgan, E. G., Furman, B., Gaynes, M., Graham, W. S., LaBianca, N. C., Magerlein, J. H. et al. (2007). A Practical Implementation of Silicon Microchannel Coolers for High Power Chips. IEEE Transactions on Components and Packaging Technologies, 30 (2), 218–225. doi: 10.1109/tcapt.2007.897977
  2. Mawatari, K., Kazoe, Y., Aota, A., Tsukahara, T., Sato, K., Kitamori, T. (2012). Microflow Systems for Chemical Synthesis and Analysis: Approaches to Full Integration of Chemical Process. Journal of Flow Chemistry, 1 (1), 3–12. doi: 10.1556/jfchem.2011.00003
  3. Koo, J.-M., Im, S., Jiang, L., Goodson, K. E. (2005). Integrated Microchannel Cooling for Three-Dimensional Electronic Circuit Architectures. Journal of Heat Transfer, 127 (1), 49. doi: 10.1115/1.1839582
  4. Yang, P., Rizvi, A. H., Messer, B., Chmelka, B. F., Whitesides, G. M., Stucky, G. D. (2001). Patterning porous oxides within microchannel networks. Advanced Materials, 13 (6), 427–431. doi: 10.1002/1521-4095(200103)13:6<427::aid-adma427>3.3.co;2-3
  5. Miyazaki, M., Maeda, H. (2006). Microchannel enzyme reactors and their applications for processing. Trends in Biotechnology, 24 (10), 463–470. doi: 10.1016/j.tibtech.2006.08.002
  6. Kandlikar, S. G., Grande, W. J. (2002). Evolution of microchannel flow passages – Thermohydraulic performance and fabrication technology. ASME 2002. International Mechanical Engineering Congress and Exposition. New Orleans, Louisiana, 59–72. doi: 10.1115/imece2002-32043
  7. Chen, Y., Cheng, P. (2002). Heat transfer and pressure drop in fractal tree-like microchannel nets. International Journal of Heat and Mass Transfer, 45 (13), 2643–2648. doi: 10.1016/s0017-9310(02)00013-3
  8. Oh, K. W., Han, A., Bhansali, S., Ahn, C. H. (2002). A low-temperature bonding technique using spin-on fluorocarbon polymers to assemble Microsystems. Journal of Micromechanics and Microengineering, 12 (2), 187–191. doi: 10.1088/0960-1317/12/2/313
  9. Liu, R. H., Stremler, M. A., Sharp, K. V., Olsen, M. G., Santiago, J. G., Adrian, R. J. et al. (2000). Passive mixing in a three-dimensional serpentine microchannel. Journal of Microelectromechanical Systems, 9 (2), 190–197. doi: 10.1109/84.846699
  10. Aref, H. (1984). Stirring by chaotic advection. Journal of Fluid Mechanics, 143 (1), 1–23. doi: 10.1017/s0022112084001233
  11. Ottino, J. M. (1989). The kinematics of mixing: stretching, chaos and transport. Cambridge: Cambridge Univ. Press, 364.
  12. Mashelkar, R. A. (1995). Seamless chemical engineering science: the emerging paradigm. Chemical Engineering Science, 50 (1), 1–22. doi: 10.1016/0009-2509(94)00459-5
  13. Tangborn, A. V., Silevitch, D. M., Howes, T. (1995). Chaotic advection in 2-D mixed convection flow. Chaos: An Interdisciplinary Journal of Nonlinear Science, 5 (2), 432–438. doi: 10.1063/1.166113 .
  14. Berning, R., Gurzhij, O. A., Meleshko, V. V. (2007). Zmishuvannya vazkoy ridyny v pryamokutnomy mikrokanali. Mat. Met. I Fiz.-meh. polja, 50 (4), 140–148.
  15. Gurzhij, A. A. Peerhosaini, H. (2000). Lokal'nye karty rastjazhenij: prilozhenie dlja zadachi ob advekcii v proizvol'nom pole skorosti. Prikladnaja gidromehanika, 2 (1), 28–43.
  16. Aref, H. (1990). Chaotic advection of fluid particle. Philosophical Transactions of Royal Society A, 333, 273–288.
  17. Kutateladze, S. S. (1979). Osnovy teorii teploobmena. Moscow: Atomizdat, 416.
  18. Stroock, A. D., Dertinger, S. K. W., Ajdari, A., Mezić, I., Stone, H. A., Whitesides, G. M. (2002). Chaotic mixer for microchannels. Science, 295 (5555), 647–651. doi: 10.1126/science.1066238
  19. Roberts, E. P. L., Mackley, M. R. (1995). The simulation of stretch rates for the quantitative prediction and mapping mixing within a channel flow. Chemical Engineering Science, 50 (23), 3727–3746. doi: 10.1016/0009-2509(95)00196-c
  20. Mengeaud, V., Josserand, J., Girault, H. H. (2002). Mixing processes in a zigzag microchannel: Finite element simulations and optical study. Analytical Chemistry, 74 (16), 4279–4286. doi: 10.1021/ac025642e
  21. Lamb, H. (1979). Gidrodynamika. Moscow-Leningrad: GITTL, 929.
  22. Loitsyansky, L. G. (1987). Mekanika zhidkosty i gaza. Moscow: Nauka, 840.
  23. Rouch, P. (1980). Vychislitelnaya gidromechanika. Moscow: Mir, 616.
  24. Lykov, A. V. (1967). Teoriya teploprovodnosty. Moscow: Vysshaya shkola, 600.
  25. Fletcher, K. (1991). Vychislitelnye metody v dynamike zhidkostey. Moscow: Mir, 1, 504.
  26. Shlihting, G. (1974). Teoriya pogranichnogo sloya. Moscow: Nauka, 712.
  27. Moffatt, H. K. (1964). Viscous and resistive eddies near a sharp corner. Journal of Fluid Mechanics, 18, 1–18.

Published

2015-12-25

How to Cite

Гуржий, А. А., & Шалденко, А. В. (2015). Analysis of heat transfer processes in curvilinear microchannels filled with a viscous incompressible fluid. Eastern-European Journal of Enterprise Technologies, 6(8(78), 41–49. https://doi.org/10.15587/1729-4061.2015.55508

Issue

Section

Energy-saving technologies and equipment