Experimental research on the thermal state of a shell for noise and heat insulation of the gte90l2 gas turbine engine used for the mechanical drive of the gcu-c-16s turbo-compressor package

Authors

  • Олег Миколайович Щербаков Public Joint Stock Company «Sumy Machine-Building Science-and-Production Association» 58 Gorky Str., Sumy, Ukraine, 40004, Ukraine https://orcid.org/0000-0002-8431-6314
  • Дмитро Олександрович Ткаченко Public Joint Stock Company «Sumy Machine-Building Science-and-Production Association» 58 Gorky Str., Sumy, Ukraine, 40004, Ukraine https://orcid.org/0000-0001-6797-393X
  • Володимир Петрович Парафійник Public Joint Stock Company «Sumy Machine-Building Science-and-Production Association» 58 Gorky Str., Sumy, Ukraine, 40004, Ukraine https://orcid.org/0000-0001-7061-6992
  • Володимир Михайлович Гуріненко Ukrtransgaz PJSC, Branch Office of Prykarpattransgaz LPU MG, Knyazholuka Village, Dolynskyi District, Ivano-Frankivsk Region, Ukraine, 77540, Ukraine https://orcid.org/0000-0002-9547-7519
  • Володимир Євгенович Костюк National Aerospace University «Kharkiv Aviation Institute» Chkalova 17, Kharkiv, Ukraine, 61070, Ukraine https://orcid.org/0000-0003-0142-8060
  • Олексій Іванович Cкрипка National Aerospace University «Kharkiv Aviation Institute» Chkalova 17, Kharkiv, Ukraine, 61070, Ukraine https://orcid.org/0000-0002-6328-8078
  • Олена Іванівна Кирилаш National Aerospace University «Kharkiv Aviation Institute» Chkalova 17, Kharkiv, Ukraine, 61070, Ukraine https://orcid.org/0000-0003-2949-3577

DOI:

https://doi.org/10.15587/1729-4061.2015.56244

Keywords:

gas pumping unit, gas turbine drive, noise and heat insulation shell, thermal state, temperature measurement

Abstract

We have devised a methodology and obtained experimental findings on the thermal state of the noise and heat insulation shell in the GTE90L2 gas turbine engine designed by the State Enterprise Gas Turbine Research & Production Complex (SE GTRPC) Zorya-Mashproekt as a part of the turbine of the GCU-C-16S gas pumping units produced by the Sumy Machine Building Research and Production Association and operated as a part of the Dolyna (Valley) compressor station.
We studied the sustainable mode of the unit with three modes of the shell ventilation to measure the flow rate of air supplied to the shell, air temperature at 23 points and the temperature of the inner surfaces of the walls at 14 points in the shell, as well as the air temperature outside the enclosure. In our measurements, we used the MS-13 cup anemometer and a multi-channel information-measuring system that included temperature measurement sensors based on the TCA-type thermoelectric converters and protected from the effects of infrared radiation, as well as the MPS-M measuring point selection switch and the digital thermometer Technoterm 9503.
The research was predetermined by the inability of the previous research data on the thermal state of the covers of drive turbine engines to prove the adequacy of the mathematical model for the thermal state of standardized shells for noise and heat insulation of engines for gas pumping units designed by the Sumy Machine Building Research and Production Association.
We have determined the thermal state of the noise and heat shell of the GTE90L2 gas turbine engine as a part of the GCU-C-16S gas pumping unit operated as a part of the Dolyna (Valley) compressor station. The research has revealed, in particular, uneven distribution of temperatures of the air and internal surfaces of the shell walls as well as a significant effect of heat radiation from the engine upon the thermal state of the shell.
The obtained data on the thermal state of the shell are useful and important for producers of gas pumping equipment with gas turbine drives since their quality and quantity are sufficient for verifying the generalized mathematical model of the thermal state of shells, and the methods of their obtaining are free from the shortcomings that are inherent in the previous studies.

Author Biographies

Олег Миколайович Щербаков, Public Joint Stock Company «Sumy Machine-Building Science-and-Production Association» 58 Gorky Str., Sumy, Ukraine, 40004

PhD, Lead Designer

Department of the turbo units

Дмитро Олександрович Ткаченко, Public Joint Stock Company «Sumy Machine-Building Science-and-Production Association» 58 Gorky Str., Sumy, Ukraine, 40004

Head of the department

Department of the turbo units 

Володимир Петрович Парафійник, Public Joint Stock Company «Sumy Machine-Building Science-and-Production Association» 58 Gorky Str., Sumy, Ukraine, 40004

Dr. Sc., Professor

Leading Researcher

Володимир Михайлович Гуріненко, Ukrtransgaz PJSC, Branch Office of Prykarpattransgaz LPU MG, Knyazholuka Village, Dolynskyi District, Ivano-Frankivsk Region, Ukraine, 77540

Head of Gas Compressor Station

Dolynskyi Local Operations and Maintenance Department of Main Gas Pipelines

Володимир Євгенович Костюк, National Aerospace University «Kharkiv Aviation Institute» Chkalova 17, Kharkiv, Ukraine, 61070

PhD, Senior Researcher, Leading Researcher

Department of aircraft engine design

Олексій Іванович Cкрипка, National Aerospace University «Kharkiv Aviation Institute» Chkalova 17, Kharkiv, Ukraine, 61070

PhD, Associate Professor, Associate Professor

Department of aircraft engine design

Олена Іванівна Кирилаш, National Aerospace University «Kharkiv Aviation Institute» Chkalova 17, Kharkiv, Ukraine, 61070

Junior Researcher

Department of aircraft engine design

References

  1. Kostjuk V. E., Kirilash, E. I., Kravchuk, A. L. (2013). Obobshhjonnaja matematicheskaja model' teplovogo sostojanija ukrytij gazoturbinnyh ustanovok. Integrirovannye tehnologii i jenergosberezhenie, 1, 22–26.
  2. Smirnov, A. V., Kostjuk, V. E., Tkachenko, D. A., Kirilash, E. I., Slabko, Ju. N (2013). Obespechenie teplovogo rezhima silovogo bloka gazoperekachivajushhego agregata organizovannoj podachej vozduha pod shumoteploizolirujushhij kozhuh gazoturbinnogo dvigatelja. Vestnik dvigatelestroenija, 2, 99–107.
  3. Nikolaev, V. N. (2010). Matematicheskoe modelirovanie teplovogo sostojanija otsekov i sistem samoleta pri proektirovanii i letnyh ispytanijah. Novosibirsk: Izd-vo NGTU, 252.
  4. Tkachenko, V. B. (2002). Naukovi osnovy stvorennja ta vdoskonalennja system termoreguljuvannja transportnyh kompleksiv radioelektronnoi' aparatury. Odesa, 35.
  5. Trusov, P. V., Charncev, D. A. (2012). Chislennye issledovanija processa ventiljacii i teplovogo sostojanija shumoteplozashhitnyh kozhuhov gazoturbinnyh ustanovok s ispol'zovaniem parallel'nyh vychislenij. Vychislitel'naja mehanika sploshnyh sred, 5 (2), 208–216.
  6. Klochkov, A. V., Kornilova, E. S., Snitko, A. A. (2005). Obespechenie vzryvozashhity gazoturbinnogo oborudo-vanija. Gazoturbinnye tehnologii, 8, 20–22.
  7. D’Ercole, M., Biffaroni, G., Grifoni, F., Zanobini, F., Pecchi, P. (2005). Results and Experience from Ge Energy’s MS5002E Gas Turbine Testing and Evaluation. Proceedings of ASME TurboExpo 2005. Reno, Nevada, USA, 9. doi: 10.1115/gt2005-68053
  8. Ponnuraj, B., Sultanian, B., Novori, A., Pecchi, P. (2003). 3D CFD Analysis of an Industrial Gas Turbine Compartment Ventilation System. Proceedings of ASME International Mechanical Engineering Congress (IMECE’03). Washington, D.C., USA, 67–76. doi: 10.1115/imece2003-41672
  9. Graf, E., Luce, T., Willet, F. (2005). Design Improvements Suggested by Computational Flow and Thermal Analyses for the Cooling of Marine Gas Turbine Enclosures. Proceedings of ASME TurboExpo 2005. Reno, Nevada, USA, 7. doi: 10.1115/gt2005-68574
  10. Vahidi, D., Bagheri, H., Glezer, B. (2006). Numerical and Experimental Study of Ventilation for Turbine Package Enclosure. Proceedings of ASME TurboExpo 2006. Barcelona, Spain, 10. doi: 10.1115/gt2006-90960
  11. D’Jerkole, M., Trincha, F. (2006). Novaja gazovaja turbina MS5002E: ispytanija pervogo agregata. Gazoturbinnye tehnologii, 3, 6–11.
  12. Popescu, J. A., Petcu, R., Vilag, V. A., Vataman, I., Silivestru, V. (2008). Numerical simulation to determine ejection device geometry for turbo-shaft driven water pump. Proceedings of ASME TurboExpo 2008. Berlin, Germany, 8. doi: 10.1115/gt2008-50968
  13. Trusov, P. V. et al. (2007). Issledovanie struktury techenija ohlazhdajushhego vozduha v shumoteplozashhitnom kozhuhe gazoturbinnoj ustanovki. Transport i podzemnoe hranenie gaza, 1, 20–24.
  14. Trusov, P. V., Charncev, D. A., Pechenkina, A. M. (2010). Issledovanie teplovogo sostojanija shumoteplozashhitnogo kozhuha gazoturbinnoj ustanovki gazoperekachivajushhego agregata. Himicheskoe i neftegazovoe mashinostroenie, 8, 8–10.
  15. Merzljakov, E. V. (2013). Modelirovanie gazodinamicheskih i teplovyh processov v objome kozhuha silovogo bloka gazoperekachivajushhih agregatov. Izhevsk, 20.
  16. Lopez, E., Zhubrin, S. V. (1997). 3D turbulent flow and heat transfer in a ventilated compressor cab. CHAM 2421/2, 33. Available at: http://www.cham.co.uk/phoenics/d_polis/d_applic/recapps/compcab/compcab.doc.
  17. Saunders, C. J. (2003). Outstanding safety questions concerning the analysis of ventilation and gas dispersion in gas turbine enclosures: Best Practice Guidelines on in-situ testing. ECO/03/06 / Health & Safety Laboratory,17. Available at: http://www.hse.gov.uk/research/hsl_pdf/2003/eco03-06.pdf.
  18. Lewis, M. J., Lea, C. J. (2000). A study of the consequences of leaks from gas turbine power plant sited in a turbine hall. HSL/2000/19 / Health & Safety Laboratory,44. Available at: http://www.hse.gov.uk/research/hsl_pdf/2000/hsl00-19.pdf.
  19. Santon, R. C., Lea, C. J., Lewis, M. J., Pritchard, D. K., Thyer, A. M., Sinai, Y. (2000). Studies into the role of ventilation and the consequences of leaks in gas turbine power plant acoustic enclosures and turbine halls. Hazards XV: symposium series № 147. Manchester, UK, 15. Available at: https://books.google.com.ua/books?id=hJeaCRAs6KYC&printsec=frontcover&dq=hazards+XV&hl=ru&sa=X&ved=0CBwQ6AEwAGoVChMIjbPy_f_rxwIVglssCh1RqgAt#v=onepage&q=hazards%20XV&f=false.
  20. Phelps, P., Wylie, D. (2000). Ventilation and Leak Dispersion in CCGT Enclosures. Available at: http://www.cham.co.uk/PUC/PUC_Luxembourg/Presentations/Flowsolve_Phelps_Gas_Leaks.ppt.

Published

2015-12-25

How to Cite

Щербаков, О. М., Ткаченко, Д. О., Парафійник, В. П., Гуріненко, В. М., Костюк, В. Є., Cкрипка О. І., & Кирилаш, О. І. (2015). Experimental research on the thermal state of a shell for noise and heat insulation of the gte90l2 gas turbine engine used for the mechanical drive of the gcu-c-16s turbo-compressor package. Eastern-European Journal of Enterprise Technologies, 6(7(78), 35–42. https://doi.org/10.15587/1729-4061.2015.56244

Issue

Section

Applied mechanics