Analysis of existing approaches to setting the intelligent management systems of transport undertakings

Authors

  • Денис Юрійович Зубенко Kharkiv National Academy of Municipal Economy, vul. Revolutsii,12, Kharkiv, Ukraina, 61002, Ukraine https://orcid.org/0000-0002-6736-7849
  • Андрій Віталійович Коваленко Kharkiv National Academy of Municipal Economy, vul. Revolutsii,12, Kharkiv, Ukraina, 61002, Ukraine
  • Олександр Миколайович Кузнєцов Kharkiv National Academy of Municipal Economy, vul. Revolutsii,12, Kharkiv, Ukraina, 61002, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2015.56693

Keywords:

intelligent systems, dynamically variable objects, transport undertakings

Abstract

The problem of designing intelligent management systems (IMS) of dynamically variable objects (DO), operating under significant a priori uncertainty is considered. The analysis of existing approaches to developing DO IMS, methods, models and algorithms of their construction based on the integration of classical methods of management theory and artificial intelligence methods was presented. As examples of DO, rolling stock (TU) of the multi-mode enterprises is examined. The range of unresolved problems is identified, the purpose and objectives for the solution are formulated.

Currently, the problem of designing the automatic management systems of dynamically variable objects is characterized by the transition from the paradigm of adaptive management to the paradigm of intelligent management. This is caused by a continuous complication of management objects and conditions of their operation, the emergence of new classes of computing means (in particular, distributed computing systems), high-performance telecommunications channels, and a sharp increase in the reliability and efficiency requirements for management processes under significant a priori and a posteriori uncertainty. Accounting of these factors is possible only on the basis of transition from "hard" algorithms of parametric and structural adaptation to the anthropomorphic principle of management formation.

Author Biographies

Денис Юрійович Зубенко, Kharkiv National Academy of Municipal Economy, vul. Revolutsii,12, Kharkiv, Ukraina, 61002

Candidate of Technical Sciences, PhD, Associate Professor Department "Electrotransport"

Андрій Віталійович Коваленко, Kharkiv National Academy of Municipal Economy, vul. Revolutsii,12, Kharkiv, Ukraina, 61002

Associate professor, Candidate of technical science

Department of electric transport

Олександр Миколайович Кузнєцов, Kharkiv National Academy of Municipal Economy, vul. Revolutsii,12, Kharkiv, Ukraina, 61002

Associate professor, Candidate of technical science

References

  1. Artsybashev, A. Y., Nikitin, R. Yu. (2014). Diagnosing drive vehicles based on neural networks. Acta Facultatis forestalis Zvolen, 56 (1), 201–208.
  2. Kostin, N. S. (2013). Mesto modul'nyh nejronnyh setej v klassifikacii iskusstvennyh nejronnyh setej. Intellektual'nyj potencial HHІ veka: stupeni poznanija, 19, 91–95.
  3. Sinchuk, O. N., Bojko, S. N. (2014). Nejronnye seti i upravlenie processom upravlenija jelektrosnabzheniem obektov ot kombinirovannyh jelektricheskih setej. Tehnichna elektrodinamika, 5, 53–55.
  4. Manzhula, V. G., Fedjashov, D. S. (2011). Nejronnye seti Kohonena i nechetkie nejronnye seti v intellektual'nom analize dannyh. Fundamental'nye issledovanija, 4, 108–114.
  5. Tarkov, M. S. (2013). Otobrazhenie parallel'nyh programm na mnogojadernyh komp'juterah s rekurrentnymi nejronnymi setjami. Prikladnaja diskretnaja matematika, 2 (20), 50–58.
  6. Kolbasin, V. A. (2011). Parallel processing of data flow by artificial neural networks on the cuda platform. Eastern-European Journal of Enterprise Technologies, 3 (3 (51)), 54–57. Available at: http://journals.uran.ua/eejet/article/view/1560/1458
  7. Gorbacheev, S. V., Syrjamkin, V. I. (2014). Nejro–nechetkie metody v intellektual'nyh sistemah obrabotki i analiza mnogomernoj informacii. Tomsk: Izd–vo Tomskogo un–ta, 441.
  8. Semenov, A. M. (2014). Intellektual'nye sistemy. Orenburg: OGU, 236.
  9. Vasil'ev, A. N., Tarhov, D. A. (2014). Nejrosetevye metody i algoritmy matematicheskogo modelirovanija. St. Peterburg: Izd–vo Politehn. un–ta, 581.
  10. Jeshbi, U. R. (2014). Vvedenie v kibernetiku. Moscow: URSS: LENAND, 432.
  11. Andrejchikov, A. V., Andrejchikova, O. N. (2014). Sistemnyj analiz i sintez strategicheskih reshenij v innovatike. Moscow: URSS, 304.
  12. Guljaev, V. A. (1993). Tehnicheskaja diagnostika upravljajushhih sistem. Kyiv: Naukova dumka, 208.
  13. Denisov, A. A., Kolesnikov, D. M. (1982). Teorija bol'shih sistem upravlenija. Leningrad: Jenergoizdat, 288.
  14. Komarcova, L. G., Maksimov, A. V. (2002). Pejrokomp'jutery. Moscow: MGTU im. Baumana, 320.
  15. Kuzovkov, P. T. (1976). Modal'noe upravlenie i nabljudajushhie ustrojstva. Moscow: Mashinostroenie, 184.
  16. Sadovskii, M. G. (Ed.) (2014). Nejroinformatika, ejo prilozhenija i analiz dannjah. Krasnojarsk: IVM SO RAN, 195.
  17. Molchanov, I. N. (1987). Mashinnye metody reshenija prikladnyh zadach. Algebra, priblizhenie funkcij. Kyiv: Naukova dumka, 288.
  18. Mashkina, I. V. (1989). Reguljator peremennoj struktury chastoty vrashhenija rotora gazoturbinnogo dvigatelja v sisteme upravlenija reaktivnym soplom. Ufa: UAI, 21.
  19. Melsa, D., Dzhons, S. (1981). Programmy v pomoshh' izuchajushhim teoriju linejnyh sistem upravlenija. Moscow: Mashinostroenie, 199.
  20. Neterson, D. (1984). Teorija setej Netri i modelirovanie sistem. Moscow: Mir, 264.
  21. Gregor, D., Toral, S., Ariza, T., Barrero, F., Gregor, R., Rodas, J., Arzamendia, M. (2015). A methodology for structured ontology construction applied to intelligent transportation systems. Computer Standards & Interfaces. doi: 10.1016/j.csi.2015.10.002
  22. Larue, G. S., Rakotonirainy, A., Haworth, N. L., Darvell, M. (2015). Assessing driver acceptance of Intelligent Transport Systems in the context of railway level crossings. Transportation Research. Part F: Traffic Psychology and Behaviour, 30, 1–13. doi: 10.1016/j.trf.2015.02.003
  23. Satunin, S., Babkin, E. (2014). A multi–agent approach to Intelligent Transportation Systems modeling with combinatorial auctions. Expert Systems with Applications, 41 (15), 6622–6633. doi: 10.1016/j.eswa.2014.05.015
  24. Demin, D. A. (2012). Synthesis of optimal temperature regulator of electroarc holding furnace bath. Scientific Bulletin of National Mining University, 6, 52–58.
  25. Mendes, J., Araújo, R., Sousa, P., Apóstolo, F., Alves, L. (2011). An architecture for adaptive fuzzy control in industrial environments. Computers in Industry, 62 (3), 364–373. doi: 10.1016/j.compind.2010.11.001
  26. Wai, R.-J., Chen, M.-W., Yao, J.-X. (2015). Observer–based adaptive fuzzy–neural–network control for hybrid maglev transportation system. Neurocomputing, 175, 10–24. doi: 10.1016/j.neucom.2015.10.006

Published

2015-12-25

How to Cite

Зубенко, Д. Ю., Коваленко, А. В., & Кузнєцов, О. М. (2015). Analysis of existing approaches to setting the intelligent management systems of transport undertakings. Eastern-European Journal of Enterprise Technologies, 6(9(78), 17–22. https://doi.org/10.15587/1729-4061.2015.56693

Issue

Section

Information and controlling system