Design of robust controllers for plants with large dead time

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.59107

Keywords:

proportional, integral, differential, controller, predictor, model, predictive, robust, hard controlled, dead time

Abstract

The robust control system design problem for plants with large dead time is analyzed. Such plants are distributed in industry. The plants are hard controlled because controllers use past state of the plant output. The control quality analysis is provided with the help of direct, integral and frequency performance indexes. The analysis results show that the best design method is SIMC for PI-controller among classic controllers. Some better result gives PIDF design of the modified PID-controller with aperiodic filter, and frequency Matlab design of PI controller using the Smith predictor modified by Huang. The design of special model predictive controllers is not efficient for the plants with large dead time.

Author Biographies

Андрей Алексеевич Стопакевич, O. S. Popov Odessa national academy of telecommunications 1 Kuznechnaya str., Odesa, Ukraine, 65029

PhD, associate professor

Department of computer-integrated technological processes and industries

Алексей Аркадьевич Стопакевич, Odessa National Polytechnic University 1 Shevchenko ave., Odesa, Ukraine, 65044

PhD, associate professor

Department of automation of power processes

References

  1. Åström, K. J., Hägglund, T. (2006). Advanced PID control. USA: Instrumentation, Systems, and Automation Society, 460.
  2. O’Dwyer, A. (2006). Handbook of PI and PID Controller Tuning Rules. Control Systems, IEEE (2 ed.). London: Imperial Colledge Press, 564.
  3. Smyt, D. (1962). Avtomatycheskoe rehulyrovanye. Moscow: Fyzmathyz, 280.
  4. Ziegler, J. G., Nichols, N. B. (1942). Optimum setting for automatic controllers. Trans. American Society of Mechanical Engineers, 64, 759–768.
  5. Silva, G., Datta, A., Bhattacharyya, S. P. (2005). PID controllers for time-delay systems. Boston: Birkhäuser, 330.
  6. Skogestad, S. (2004). Simple analytic rules for model reduction and PID controller tuning. Modeling, Identification and Control: A Norwegian Research Bulletin, 25 (2), 85–120. doi: 10.4173/mic.2004.2.2
  7. Rivera, D. E., Morari, M., Skogestad, S. (1986). Internal model control: PID controller design. Engineering Chemistry Process Design and Development, 25 (1), 252–265. doi: 10.1021/i200032a041
  8. Morari, M., Zafiriou, E. (1989). Robust Process Control. USA, NJ: Prentice Hall, 512.
  9. Skogestad, S. (2001). Probably the best simple PID tuning rules in the world. Journal of Process Control, 1, 3–29.
  10. Chertkov, A. A., Tormashev, D. S., Saburov, S. B. (2014). Parametrycheskaia nastroika PYD-rehuliatorov dynamycheskykh system sredstvamy MATLAB. Vestnyk hosudarstvennoho unyversyteta morskoho y rechnoho flota ymeni admyrala S. O. Makarova, 27 (5), 164–171.
  11. Normey-Rico, J. E., Camacho, E. F. (2007). Control of Dead-time Processes. Springer-Verlag, 488. doi: 10.1109/MCS.2008.927324
  12. Kopelovych, A. P. (1960). Ynzhenernie metodi rascheta pry vibore avtomatycheskykh rehuliatorov. Moscow: Metallurhyzdat, 192.
  13. Kharabet, A. N. (2014). Vyvchennia klasychnoi teorii avtomatychnoho upravlinnia za dopomohoiu suchasnoho personalnoho kompiutera. Odesa: Bakhva, 188.
  14. Zhuang, M., Atherton, D. P. (1993). Automatic tuning of optimum PID controllers. IEE Proceedings D Control Theory and Applications, 140 (3), 216–224. doi: 10.1049/ip-d.1993.0030
  15. Mikhalevich, S. S., Baydali, S. A., Manenti, F. (2015). Development of a tunable method for PID controllers to achieve the desired phase margin. Journal of Process Control, 25, 28–34. doi: 10.1016/j.jprocont.2014.10.009
  16. Babakov, N. A., Voronov, A. A., Voronova, A. (1986). Teoryia lyneinikh system avtomatycheskoho upravlenyia (2nd edition). Moscow: Visshaia shkola, 367.
  17. Normey-Rico, J. E., Camacho, E. F. (2008). Dead-time compensators: A survey. Control Engineering Practice, 16 (4), 407–428. doi: 10.1016/j.conengprac.2007.05.006
  18. Huang, H.-P., Chen, C.-L., Chao, Y.-C., Chen, P.-L. (1990). A modified smith predictor with an approximate inverse of dead time. AIChE Journal, 36 (7), 1025–1031. doi: 10.1002/aic.690360708
  19. Stopakevych, A. A. (2007). Novie sootnoshenyia dlia synteza tsyfrovikh optymalnikh odnomernikh system upravlenyia dlia obiektov s zapazdivanyem. AAEKS, 19, 115–117.
  20. Sha, Y. A., Laur, B. L. D. (2013). PID versus MPC Performance for SISO Dead-time Dominant Processes. 10th IFAC International Symposium on Dynamics and Control of Process Systems. Mumbai India, 241–246. doi: 10.3182/20131218-3-in-2045.00054
  21. Visioli, A. (2009). Practical PID control. London: Springer, 310. doi: 10.1007/1-84628-586-0
  22. MPC tuning weights (2016). Available at: http://www.mathworks.com/help/mpc/ug/tuning-weights.html#buj3_8a

Published

2016-02-28

How to Cite

Стопакевич, А. А., & Стопакевич, А. А. (2016). Design of robust controllers for plants with large dead time. Eastern-European Journal of Enterprise Technologies, 1(2(79), 48–56. https://doi.org/10.15587/1729-4061.2016.59107