Development of the evaluation model of technological parameters of shaping workpieces from powder materials

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.59418

Keywords:

fuzzy sets, shaping, equal density, hydropulse drive, vibropress equipment, powder material

Abstract

High efficiency of the technological process of shaping workpieces from powder materials using vibratory and vibro-impact treatments was defined. High degree of intensification of the process of workpiece sealing is achieved using original inertial vibration press-hammers with hydropulse drive.

The explored systematic approach to technological process of shaping (process, machine, and workpiece) and sets of design parameters of technological equipment allowed us to create a mathematical model of determining average density of a workpiece. Extremum of array of values of membership function as a determinant of completeness and effectiveness, was selected as the criterion of estimation of functioning efficiency of technological process of shaping workpieces

Assessment of efficiency of functioning of technological complex was made based on fuzzy sets. Relationships between parameters of average density of a workpiece and function of the mode of vìbroimpact loading of a workpiece were defined.

Performed analysis of technological parameters of workpieces demonstrated adequacy of the developed complex mathematical apparatus for evaluation of dynamic changes in average density and uneven density of derived products. Expediency of time restriction of shaping a final product by vibroimpact pressing method for quality maintaining was established.

Development of a promising method of evaluation of production complex condition based on vibropress equipment with hydropulse drive will allow an increase in efficiency of the technological process of shaping workpieces from powder materials.

Author Biographies

Rostislav Iskovych-Lototsky, Vinnytsia National Technical University Khmelnytske shose str., 95, Vinnytsia, Ukraine, 21021

Doctor of Technical Sciences, Professor, Head of Department

Department of Engineering 

Oksana Zelinska, Vinnytsia National Agrarian University Soniachna str., 3, Vinnytsia, Ukraine, 21008

PhD, Senior Lecturer

Department of modeling and information technologies in economy

Yaroslav Ivanchuk, Vinnytsia National Technical University Khmelnytske shose str., 95, Vinnytsia, Ukraine, 21021

PhD, Associate Professor

Department of Engineering 

Natalia Veselovska, Vinnytsia National Agrarian University Soniachna str., 3, Vinnytsia, Ukraine, 21008

Doctor of Technical Sciences, Professor, Head of Department

Department of machinery and equipment in agricultural production

References

  1. Iskovych-Lotoc'kyj, R. D. (2006). Osnovy teorii' rozrahunku ta rozrobka procesiv i obladnannja dlja vibroudarnogo presuvannja. Vinnycja: UNIVERSUM-Vinnycja, 338.
  2. Iskovych-Lotoc'kyj, R. D., Ivanchuk, Ja. V. (2012). Vibracijni ta vibroudarni prystroi' dlja rozvantazhennja transportnyh zasobiv. Vinnycja: UNIVERSUM-Vinnycja, 156.
  3. Virnyk, M. M., Iskovych-Lotoc'kyj, R. D., Veselovs'ka, N. R. (2012). Vibracijni ta vibroudarni procesy i mashyny u lyvarnomu vyrobnyctvi. Vinnycja: UNIVERSUM-Vinnycja, 198.
  4. Eremeeva, Zh. V., Nitkin, N. M., Sharipzjanova, G. P. (2011). Osobennosti primenenija nanorazmernyh poroshkov ugleroda i hroma na processy podgotovki shihty i pressovanija poroshkovyh stalej. Izvestija moskovskogo gosudarstvennogo tehnicheskogo universiteta MAMI, 2 (12), 123–127.
  5. Anciferov, V. N., Perel'man, V. E. (2012). Formovanie poroshkovyh materialov v centrifuge. Vestnik Permskogo nacional'nogo issledovatel'skogo politehnicheskogo universiteta. Mashinostroenie, materialovedenie, 14 (2), 5–7.
  6. Sevost'janov, I. V., Slabkij, A. V., Polishhuk, A. V., Ol'shevskij, A. I. (2015). Unit for vibro-impact dehydration of wastes of food production in the press-form. Technology audit and production reserves, 4 (4 (24)), 41–46. doi: 10.15587/2312-8372.2015.47694
  7. Saruev, L. A., Kazancev, A. A. (2008). Razrabotka i issledovanie gidromehanicheskoj sistemy formirovanija silovyh impul'sov v stave shtang dlja intensifikacii vrashhatel'nogo burenija. Izvestija Tomskogo politehnicheskogo universiteta, 313 (1), 75–78.
  8. Tymchuk, S., Miroshnyk, O. (2015). Assess electricity quality by means of fuzzy generalized index. Eastern-European Journal of Enterprise Technologies, 3 (4 (75)), 26–31. doi: 10.15587/1729-4061.2015.42484
  9. Yan, H., Zou, Z., Wang, H. (2010). Adaptive neuro fuzzy inference system for classification of water quality status. Journal of Environmental Sciences, 22 (12), 1891–1896. doi: 10.1016/s1001-0742(09)60335-1
  10. Masloboev, A. V., Maksimova, V. V. (2010). Metod i tehnologija kompleksnoj ocenki jeffektivnosti innovacij na nachal'nyh jetapah zhiznennogo cikla na osnove matematicheskogo apparata teorii nechetkih mnozhestv. Trudy Kol'skogo nauchnogo centra RAN, 3, 50–66.
  11. Wicher, P., Zapletal, F., Lenort, R., Stas, D. (2016). Measuring the metallurgical supply chain resilience using fuzzy analytic network process. Metalurgija, 55 (4), 783–786.
  12. Iskovych-Lotoc'kyj, R. D., Veselovs'ka, N. R., Zelins'ka, O. V. (2009). Upravlinnja efektyvnistju ta nadijnistju tehnologichnyh procesiv v gnuchkyh integrovanyh vyrobnychyh systemah. Visnyk NTUU «Kyi'vs'kyj tehnichnyj instytut mashynobuduvannja», 266–270.
  13. Virnyk, M. M., Iskovych-Lotoc'kyj, R. D., Dobranjuk, Ju. V. (2007). Pat. No. 31169 UA. Formuval'na mashyna. MPK B 22 C 15/00. No. u200714153; declareted: 17.12.2007; published: 25.03.2008, Bul. No. 6, 3.
  14. Iskovych-Lotoc'kyj, R. D., Mis'kov, V. P., Ivanchuk, Ja. V. (2016). Matematychne modeljuvannja robochyh procesiv inercijnogo vibropres-molota z elektrogidravlichnoju systemoju keruvannja gidroimpul'snogo pryvoda dlja formoutvorennja zagotovok z poroshkovyh materialiv. Visnyk Hmel'nyc'kogo nacional'nogo universytetu. Serija: Tehnichni nauky, 3 (237), 176–180.
  15. Iskovych-Lotoc'kyj, R. D., Ivanchuk, Ja. V., Veselovs'kyj, Ja. P. (2016). Simulation of working processes in the pyrolysis plant for waste recycling. Eastern-European Journal of Enterprise Technologies, 1 (8 (79)), 11–20. doi: 10.15587/1729-4061.2016.59419
  16. Tan, M., Loh, C., Teo, K. (2011). Hybrid system based fuzzy-pid control schemes for unpredictable process. ICTACT Journal on Soft Computing, 2 (1), 211–217. doi: 10.21917/ijsc.2011.0033
  17. Guediri, A., Attous, D. B. (2015). Application of Fuzzy Ensembles for Optimal Distribution of Power in Electrical Networks. Journal of Fundamental and Applied Sciences, 3 (1), 1. doi: 10.4314/jfas.v3i1.1
  18. Rotshtejn, O. P. (1999). Intelektual'ni tehnologii' identyfikacii': nechitki mnozhyny, genetychni algorytmy, nejronni merezhi. Vinnycja: UNIVERSUM, 320.
  19. Silva, V. M., Costa, J. F. C. L. (2016). Sensitivity analysis of ordinary kriging to sampling and positional errors and applications in quality control. REM – International Engineering Journal, 69 (4), 491–496. doi: 10.1590/0370-44672015690159
  20. Azarova, A. O., Ruzakova, O. V. (2010). Matematychni modeli ta metody ocinjuvannja finansovogo stanu pidpryjemstva. Vinnycja: VNTU, 172.
  21. Kobayashi, S., Oh, S.-I., Altan, T. (1989). Metal forming and the finite element method. New York: Oxford University Press, 377.

Downloads

Published

2017-02-28

How to Cite

Iskovych-Lototsky, R., Zelinska, O., Ivanchuk, Y., & Veselovska, N. (2017). Development of the evaluation model of technological parameters of shaping workpieces from powder materials. Eastern-European Journal of Enterprise Technologies, 1(1 (85), 9–17. https://doi.org/10.15587/1729-4061.2017.59418

Issue

Section

Engineering technological systems