Analysis of the schematics of the compression heat-driven refrigeration machine with R744

Authors

  • Лариса Іванівна Морозюк V. S. Martynovsky Institute of Refrigeration Odessa National Academy of Food Technologies 1/3 Dvoryanskaya str., Odessa, Ukraine, 62026, Ukraine
  • Сергій Васильович Гайдук V. S. Martynovsky Institute of Refrigeration Odessa National Academy of Food Technologies 1/3 Dvoryanskaya str., Odessa, Ukraine, 62026, Ukraine
  • Богдан Геннадійович Грудка V. S. Martynovsky Institute of Refrigeration Odessa National Academy of Food Technologies 1/3 Dvoryanskaya str., Odessa, Ukraine, 62026, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2016.59470

Keywords:

compressor heat-driven refrigeration machine, heat recovery, R744, thermodynamic analysis, exergy efficiency

Abstract

The classification group of heat-driven refrigeration machines includes compressor heat-driven refrigeration machines driven by a turbine that operates with the same refrigerant as the refrigeration machine.

Development of research of compressor heat-driven refrigeration machines is associated with the use of R744 (carbon dioxide) as a refrigerant. This, together with the design of new schemes and cycles and, consequently, the solution of energy saving and environmental security problems in refrigeration equipment has enhanced the utilization of heat of any temperature.

New scheme-cycle designs are developed based on heat recovery in direct and reverse refrigeration cycles by cross-flow heat exchange between flows in cycles. To estimate the energy perfection of the decisions made, modern methods of thermodynamic analysis, energy and exergy are applied, which provided a simultaneous solution of energy saving problems.

It is shown that the energy (exergy) efficiency depends on the combination of the machine scheme and the refrigerant parameters (pressure and temperature) in gas heaters, and its values are determined by the temperature level of heat utilized. The exergy analysis defined the impact of irreversible losses in each element on the overall system efficiency, revealed the most critical elements, which should be regarded in the design of heat-driven machines in question.

Author Biographies

Лариса Іванівна Морозюк, V. S. Martynovsky Institute of Refrigeration Odessa National Academy of Food Technologies 1/3 Dvoryanskaya str., Odessa, Ukraine, 62026

Doctor of Technical Science, Associate Professor

Department of refrigerators, and air conditioning installations.

Сергій Васильович Гайдук, V. S. Martynovsky Institute of Refrigeration Odessa National Academy of Food Technologies 1/3 Dvoryanskaya str., Odessa, Ukraine, 62026

PhD, assistant professor, head of the department laboratories

Богдан Геннадійович Грудка, V. S. Martynovsky Institute of Refrigeration Odessa National Academy of Food Technologies 1/3 Dvoryanskaya str., Odessa, Ukraine, 62026

Postgraduate student

Department of cryogenic technology

References

  1. Boshnjakovich, F. (1956). Tekhnycheskaja termodynamyka. Vol. 2. Moscow: Gosenergoyzdat, 372.
  2. Barenbojm, A. B. (2004). Kholodylnyje centrobezhnyje kompressory. Odessa, 208.
  3. Chystjakov, F. M. (1974). Kholodylnyje turboagregaty. Moscow: Mashynostroenje, 301.
  4. Chystjakov, F. M. (1967). Kholodylnyje turboagregaty. 2nd edition. Moscow: Mashynostroenje, 286.
  5. Chystjakov, F. M., Plotnikov, А. (1952). Kholodylnyj turboagregat s pryvodom ot turbyny, rabotajuschej na holodylnom agente. Holodylnaja tekhnyka y tekhnologyja, 3, 16–19.
  6. CO2 compressors – HG34 CO2 T. GEA BockCompressors. Available at: http://www.bock.de/media/files/pdf/produktinformationen/96177_hg34_co2t_gb.pdf
  7. Chen, Y., Lundqvist, P. (2006). Carbon dioxide cooling and power combined cycle for mobile applications. Paperpub. andpres. at 7 th IIR Gustav Lorentzen, Natural Working Fluids. Trondheim, Norway, 127.
  8. George, C., Briley, P. E. (2004). History of Refrigeration. 100 Years of Refrigeration A Supplementto ASHRAE Journal, 531–534.
  9. Hashimoto, K. (2006). Technology and market development of CO2 Heat Pump Water Heaters (Eco Cute) in Japan. IEA Heat Pump Centre Newsletter, 24, 12–16.
  10. Sarkar, J., Bhattacharyya, S., Ramgopal, M. (2004). Transcritical carbon dioxide based heat pumps: Process heat applications. International Refrigeration and Air Conditioning Conference, Purdue, R031, 1–9.
  11. Tuo, H. (2012). Thermal-economic analysis of a transcritical Rankine power cycle with reheat enhancement for a low-grade heat source. International Journal of Energy Research, 37 (8), 857–867. doi: 10.1002/er.2886
  12. Kim, Y. M., Kim, C. G., Favrat, D. (2012). Transcritical or supercritical CO2 cycles using both low- and high-temperature heat sources. Energy, 43 (1), 402–415. doi: 10.1016/j.energy.2012.03.076
  13. Lillo, T., Windes, W., Totemeier, T., Moore, R. (2004). Development of a supercritical Carbon Dioxide Brayton cycle: improving pbr efficiency and testing material compatibility. Idaho National Engineering and Environmental Laboratory (INEEL), 02-190, 28. doi: 10.2172/910960
  14. Sarkar, J., Bhattacharyya, S. (2009). Optimization of recompression S-CO2 power cycle with reheating. Energy Conversion and Management, 50 (8), 1939–1945. doi: 10.1016/j.enconman.2009.04.015
  15. Supercritical carbon dioxide Brayton cycle turbines promise giant leapin thermal-to-electric conversion efficiency. Sandia Labs News Releases, 2011. Available at: https://share.sandia.gov/news/resources/news_releases/brayton-cycle-turbines/#.VrB1dbKLQdU
  16. Gorbenko, G. A., Chajka, I. V., Gakal, P. G., Turna, R. Ju. (2009). Prymenenyje dyoksyda ugleroda v holodylnykh tekhnologyjah. Tekhnycheskyje gazy, 4, 18–22.
  17. Lee, T.-S., Liu, C.-H., Chen, T.-W. (2006). Thermodynamic analysis of optimal condensing temperature of cascade-condenser in CO2/NH3 cascade refrigeration systems. International Journal of Refrigeration, 29 (7), 1100–1108. doi: 10.1016/j.ijrefrig.2006.03.003
  18. Baek, J. S., Groll, E. A., Lawless, P. B. (2002). Developmentof a piston-cylinder expansion device for the transcritical carbon dioxide cycle. International Refrigeration and Air Conditioning Conference at Purdue, 584.
  19. Girotto, S., Minetto, S., Neksa, P. (2004). Commercial refrigeration system using CO2 as the refrigerant. International Journal of Refrigeration, 27 (7), 717–723. doi: 10.1016/j.ijrefrig.2004.07.004
  20. Nyoman Suamir, I. (2012). Integration of trigeneration and СО2 based refrigeration systems for energy conservation: a thesis submitted for the degree of Doctor of Philosophy. Department of Mechanical Engineering School of Engineering and Design Brunel University, 253.
  21. Man-Hoe, K., Pettersen, J., Bullard, C. W. (2004). Fundamental process and system design issues in CO2 vapor compression systems. Progress in Energy and Combustion Science, 30 (2), 119–174. doi: 10.1016/j.pecs.2003.09.002
  22. Samer, S. (2008). Theoretical evaluation of transcritical CO2 systems in supermarket refrigeration. Part I: Modeling, simulation and optimization of two system solutions . International Journal of Refrigeration, 31 (3), 516–524.
  23. Sarkar, J. (2010). Review on cycle modifications of transcritical CO2 refrigeration and heat pump systems. Journal Advanced Research Mechanical Engineering, 1 (1), 22–29.
  24. Morozjuk, L. I., Gajduk, S. V. (2012). A. s. UA #72660, MPK F25V27/00. 27.08.2012. Kompresorna teplovykorystalna holodylna mashyna. Odeska derzhavna akademyja holodu, Bjul. 16, 4.
  25. Morozjuk, L. Y., Morozjuk, T. V., Gajduk, S. V. (2014). Assessment of thermodynamic perfection of working substancesin cascade refrigerators. Eastern-European Journal of Enterprise Technologies, 2/8(68), 36–44. doi: 10.15587/1729-4061.2015.39201
  26. Martynovskyj, V. S. (1972). Analyz dejstvytelnyh termodynamycheskyh tsyklov. Moscow: Energyja, 216.
  27. Martynovskyj, V. S.; Brodjanskiy, V. M. (Ed.) (1970). Tsykly, shemy y kharakterystyky termotransformatorov. Moscow: Energyja, 288.
  28. Naer, V. A., Rozhencev, A. V. (2002). Analyz termodynamycheskogo tsykla kondytsyonera, rabotajuschego na CO2. Vestnyk mezhdunarodnoj akademyy holoda, 2, 21–25.
  29. Khalyq, A. (2009). Exergy analysis of gas turbine trigeneration system for combined production of power heat and refrigeration. International Journal of Refrigeration, 534–545.
  30. Bazarov, Y. P. (1991). Termodynamyka. Moscow, 376.

Published

2016-02-07

How to Cite

Морозюк, Л. І., Гайдук, С. В., & Грудка, Б. Г. (2016). Analysis of the schematics of the compression heat-driven refrigeration machine with R744. Eastern-European Journal of Enterprise Technologies, 1(8(79), 29–39. https://doi.org/10.15587/1729-4061.2016.59470

Issue

Section

Energy-saving technologies and equipment