Development of a mathematical model of the process of biological treatment of gasous effluents from formaldehyde

Authors

  • Ганна Юріївна Бахарєва National technical university «Kharkov polytechnic institute» 21 Frunze str., Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0003-0765-9943
  • Олексій Валерійович Шестопалов National technical university «Kharkiv polytechnic institute» 21 Frunze str., Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0001-6268-8638
  • Олеся Миколаївна Філенко National technical university «Kharkiv polytechnic institute» 21 Frunze str., Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-0277-6633
  • Тетяна Сергіївна Тихомирова National technical university «Kharkiv polytechnic institute» 21 Frunze str., Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0001-9124-9757

DOI:

https://doi.org/10.15587/1729-4061.2016.59508

Keywords:

mathematical model, biological treatment of effluents, formaldehyde, concentration, harmful substance, bioreactor

Abstract

Experimental studies found the kinetic characteristics of oxidation of formaldehyde in gaseous effluents by microbial association. The quantitative values of the kinetic characteristics of formaldehyde destruction indicate the technological possibility of using a biological method of treatment of gaseous effluents from formaldehyde. It is found that the specific rate of oxidation of formaldehyde (CH2O) depends on its concentration and a maximum biomass - 45 and 275 mg/g for aerobic and anaerobic processes, respectively. This fact testifies to higher efficiency of formaldehyde detoxification under anaerobic denitrification than under aerobic oxidation.

On the basis of experimental studies, a mathematical description of the processes occurring in the filled reactor vessel due to changes in the concentration of inflowing pollutants is developed. Using the found analytical relationships, an algorithm to calculate the changes in the average formaldehyde concentration in the vessel under continuous pollution is elaborated. The results allow making science-based design calculations of the process of biochemical treatment of formaldehyde.

Author Biographies

Ганна Юріївна Бахарєва, National technical university «Kharkov polytechnic institute» 21 Frunze str., Kharkiv, Ukraine, 61002

PhD, associate professor

Department of occupational safety and environmental 

Олексій Валерійович Шестопалов, National technical university «Kharkiv polytechnic institute» 21 Frunze str., Kharkiv, Ukraine, 61002

PhD, associate professor

Department of chemical technique and industrial ecology

Олеся Миколаївна Філенко, National technical university «Kharkiv polytechnic institute» 21 Frunze str., Kharkiv, Ukraine, 61002

PhD, associate professor

Department of chemical technique and industrial ecology

Тетяна Сергіївна Тихомирова, National technical university «Kharkiv polytechnic institute» 21 Frunze str., Kharkiv, Ukraine, 61002

PhD, senior teacher

Department of chemical technique and industrial ecology

References

  1. Kennes, C., Rene, E. R., Veiga, M. C. (2009). Bioprocesses for air pollution control. Journal of Chemical Technology & Biotechnology, 84 (10), 1419–1436. doi: 10.1002/jctb.2216
  2. Estrada, J. M., Bernal, O. I., Flickinger, M. C., Muñoz, R., Deshusses, M. A. (2014) Biocatalytic coatings for air pollution control: A proof of concept study on VOC biodegradation Biotechnology and Bioengineering, 112 (2), 263–271 doi: 10.1002/bit.25353
  3. Liu, D., Feilberg, A., Hansen, M. J., Pedersen, C. L., Nielsen, A. M. (2015) Modeling removal of volatile sulfur compounds in a full–scale biological air filter. Journal of Chemical Technology and Biotechnology. doi: 10.1002/jctb.4696
  4. Rojo, N., Muñoz, R., Gallastegui, G., Barona, A., Gurtubay, L., Prenafeta–Boldú, F. X., Elías, A. (2012). Carbon disulfide biofiltration: Influence of the accumulation of biodegradation products on biomass development. Journal of Chemical Technology & Biotechnology, 87 (6), 764–771. doi: 10.1002/jctb.3743
  5. Malhautier, L., Cariou, S., Legrand, P., Touraud, E., Geiger, P., Fanlo, J. L. (2014). Treatment of complex gaseous emissions emitted by a rendering facility using a semi–industrial biofilter. Journal of Chemical Technology and Biotechnology, 91 (2), 426–430. doi: 10.1002/jctb.4593
  6. Engesser, K.-H., Plaggemeier, T. (2008). Microbiological Aspects of Biological Waste Gas Purification. Biotechnology: Environmental Processes III, 11c, 275–302. doi: 10.1002/9783527620968.ch12
  7. Chan, W.-C., Peng, K.-H. (2008) Biodegradation of Methyl Ethyl Ketone and Methyl Isopropyl Ketone in a Composite Bead Biofilter. Engineering in Life Sciences, 8 (2), 167–174. doi: 10.1002/elsc.200720231
  8. Shestopalov O. V., PItak I. V. (2014). Analysis of existent processes and devices of bioscrubbing gas emissions. Technology audit and production reserves, 3/5 (17), 49–52. doi: 10.15587/2312–8372.2014.25373
  9. Álvarez–Hornos, F. J., Volckaert, D., Heynderickx, P. M., Langenhove, H. V. (2012) Removal of ethyl acetate, n–hexane and toluene from waste air in a membrane bioreactor under continuous and intermittent feeding conditions. Journal of Chemical Technology and Biotechnology, 87 (6), 739–745. doi: 10.1002/jctb.3734
  10. Rizzolo, J. A., Woiciechowski, A. L., Castro dos Santos, V. C., Soares, M., Páca, J., Soccol, C. R. (2012). Biofiltration of increasing concentration gasoline vapors with different ethanol proportions Journal of Chemical Technology and Biotechnology. 87 (6), 791–796. doi: 10.1002/jctb.3780
  11. Karre1, A., Jones1, K., Boswell, J., Paca, J. (2012). Evaluation of VOC emissions control and opacity removal using a biological sequential treatment system for forest products applications. Journal of Chemical Technology and Biotechnology, 87 (6), 797–805. doi: 10.1002/jctb.3779
  12. Lafita, C., Penya-Roja, J.-M., Gabaldón C., Martínez-Soria, V. (2012). Full–scale biotrickling filtration of volatile organic compounds from air emission in wood–coating activities. Journal of Chemical Technology and Biotechnology, 87 (6), 732–738. doi: 10.1002/jctb.3716
  13. Song, T., Yang, C., Zeng, G., Yu, G., Xu, C. (2012) Effect of surfactant on styrene removal from waste gas streams in biotrickling filters. Journal of Chemical Technology and Biotechnology 87 (6), 785–790. doi: 10.1002/jctb.3717
  14. Eiroa, M., Vilar, A., Kennes, C., Veiga, M. (2006). Formaldehyde biodegradation in the presence of methanol under denitrifying conditions. Journal of Chemical Technology and Biotechnology, 81 (3), 312–317. doi: 10.1002/jctb.1395
  15. Eiroa, M., Kennes, C., Veiga, M. (2004). Formaldehyde biodegradation and its inhibitory effect on nitrification. Journal of Chemical Technology and Biotechnology, 79 (5), 499–504. doi: 10.1002/jctb.1011
  16. Krichkovska, L. V., Shestopalov, O. V., Bakhareva, G. Y., Slis, K. V. (2013). Prozesi ta aparati biologichnoy ochistki ta dezodorazii gazopovitryanih vikidiv. Kharkiv: NTU «KhPI», 200.
  17. Krichkovska, L. V., Vaskovez, L. A., Gurenko, I. V. et. al. (2014). Proektni rishennya u rozrobzi aparativ biologichnoy ochistki gazopovitryanih vikidiv. Kharkіv: NTU «KhPI», 208.
  18. Baharеva А. Yu., Shestopalov O. V., Semenov E. O., Bukatenko N. O. (2015). Macrokinetic mathematical model development of biological treatment process of gasiform emissions. ScienceRise, 2/2(7), 12–15. doi: 10.15587/2313–8416.2015.37057

Published

2016-02-11

How to Cite

Бахарєва, Г. Ю., Шестопалов, О. В., Філенко, О. М., & Тихомирова, Т. С. (2016). Development of a mathematical model of the process of biological treatment of gasous effluents from formaldehyde. Eastern-European Journal of Enterprise Technologies, 1(10(79), 4–10. https://doi.org/10.15587/1729-4061.2016.59508