Development of penetration zone size prediction technique for hollow-cathode welding technology of spherical titanium tanks

Authors

  • Виктор Александрович Перерва Oles Honchar Dnipropetrovsk National University 72 Gagarin ave., Dnepropetrovsk, Ukraine, 49010, Ukraine https://orcid.org/0000-0001-8803-5360
  • Елена Владимировна Карпович Oles Honchar Dnipropetrovsk National University 72 Gagarin ave., Dnepropetrovsk, Ukraine, 49010, Ukraine https://orcid.org/0000-0002-0677-5822
  • Алексей Викторович Федосов Oles Honchar Dnipropetrovsk National University 72 Gagarin ave., Dnepropetrovsk, Ukraine, 49010, Ukraine https://orcid.org/0000-0001-8803-5360

DOI:

https://doi.org/10.15587/1729-4061.2016.59790

Keywords:

high-strength titanium alloys, mathematical physics, hollow-cathode welding, mathematical modeling

Abstract

Implementing the process of hollow-cathode vacuum welding at the plant requires correct mathematical processing of experimental data in order to obtain dependencies of geometrical parameters of the weld on welding conditions.

A technique for predicting the geometry of the welded joints obtained by hollow-cathode vacuum welding depending on the welding variables is proposed. The analysis was conducted on samples made of high-strength titanium alloys VT6S. The technique showed that the combined method based on a joint analysis of the results of theoretical and experimental studies allows predicting the geometrical parameters of the penetration zone with a sufficient degree of accuracy.

This technique provides a high accuracy of the calculation of the weld sizes in a predetermined range of welding conditions and can be applied in a production environment.

Author Biographies

Виктор Александрович Перерва, Oles Honchar Dnipropetrovsk National University 72 Gagarin ave., Dnepropetrovsk, Ukraine, 49010

Teacher

Department of manufacturing technology

Елена Владимировна Карпович, Oles Honchar Dnipropetrovsk National University 72 Gagarin ave., Dnepropetrovsk, Ukraine, 49010

PhD, Associate professor

Department of manufacturing technology

Алексей Викторович Федосов, Oles Honchar Dnipropetrovsk National University 72 Gagarin ave., Dnepropetrovsk, Ukraine, 49010

Teacher

Department of manufacturing technology

References

  1. Yuzhmash: Vessels, which work under high pressure (ball-balloon). Available at: http://www.yuzhmash.com/production/index/ptn?id=32
  2. Pererva, V.A., Karpovich E.V. (2010). Features ball-balloon welding in a vacuum hollow cathode. Space technology.Missiles: Scientific and technical collection, 2, 137–150.
  3. Nerovnij, V. М. (2012) Improved arc welding in vacuum of titanium alloys. Welding and diagnostic, 5, 18–22.
  4. Krizan, J., De Cooman, B. C. (2008). Analysis of the strain-induced martensitic transformation of retained austenite in cold rolled micro-alloyed TRIP steel. Steel Research International, 79 (7), 513–522.
  5. Senkara, J. (2013). Contemporary car body steels for automotive industry and technological guidelines of their pressure welding. Welding International, 27 (3), 184–189. doi: 10.1080/09507116.2011.600028
  6. Pentegov, I. V. (2014). On the method of heat sources in the analysis of thermal processes in electrotechnical systems. Electrical and data processing facilities and systems, 10 (3), 5–15.
  7. Zinoviev, V. E. (1989). Thermal properties of metals at high temperatures. Moscow: Metallurgy, 384.
  8. Shcherbakov, V. V., Goncharov, A. L., Portnov, M. A. (2011). Physical and mathematical model study of heat transfer processes in electron beam welding articles of arbitrary shape. Welding production, 11, 6–13.
  9. Elcov, V. V., Potekhin, V. P., Ditenkov, O. A. (2012). Mathematical modeling of the formation of the crater shrinkage during surfacing. Welding production, 1, 3–9.
  10. Zhang, M., Li, L., Fu, R. Y., Krizan, D., De Cooman, B. C. (2006). Continuous cooling transformation diagrams and properties of micro-alloyed TRIP steels. Materials Science and Engineering: A, 438-440, 296–299. doi: 10.1016/j.msea.2006.01.128
  11. Nerovnyi, V. M., Khakhalev, A. D. (2008). Hollow cathode arc discharge as an effective energy source for welding processes in vacuum. Journal of Physics D: Applied Physics, 41 (3), 2452–2459. doi: 10.1088/0022-3727/41/3/035201
  12. Pavlyk, V. (2004). Modelling and direct numerical simulation of dendritic structures under solidification conditions during fusion welding. ISF, RWTH Aachen, Germany, 175.
  13. Larikov, L. N., Yurchenko, Y. F. (1985). Structure and properties of metals and alloys. The thermal properties of metals and alloys. Institute of Metal Physics. Kyiv: Naukova Dumka, 438.
  14. Peletsky, V. E., Chekhov, V. Y., Bel'skaya, E. A.; Sheyndlin, A. E. (Ed.) (1985). Thermal properties of titanium and its alloys. Moscow: Metallurgy, 102.
  15. Valiev, R. Z., Alexandrov, I. V. (2007). Bulk nanostructured metal materials: preparation, structure and properties. Moscow: Academbook, 398.
  16. Wang, X. D., Huang, B. X., Wang, L., Rong, Y. H. (2007). Microstructure and Mechanical Properties of Microalloyed High-Strength Transformation-Induced Plasticity Steels. Metallurgical and Materials Transactions A, 39 (1), 1–7. doi: 10.1007/s11661-007-9366-4
  17. Rahmankulov, M. M. Parashchenko, V. M. (2000). Technology casting superalloys. Moscow: "Intermet Engineering", 463.

Published

2016-02-15

How to Cite

Перерва, В. А., Карпович, Е. В., & Федосов, А. В. (2016). Development of penetration zone size prediction technique for hollow-cathode welding technology of spherical titanium tanks. Eastern-European Journal of Enterprise Technologies, 1(5(79), 47–52. https://doi.org/10.15587/1729-4061.2016.59790