The water jet guided laser method in punching honeycomb cores for Aerospace sandwich panels

Authors

  • Владимир Юрьевич Холодный Mykhailo Ostohradskyi Kremenchuk National University 20 Pershotravneva str., Kremenchuk, Ukraine, 39600, Ukraine https://orcid.org/0000-0003-4528-5655
  • Александр Федорович Саленко Mykhailo Ostohradskyi Kremenchuk National University 20 Pershotravneva str., Kremenchuk, Ukraine, 39600, Ukraine https://orcid.org/0000-0002-5685-6225

DOI:

https://doi.org/10.15587/1729-4061.2016.59870

Keywords:

water jet guided laser method, perforation, aluminum-magnesium foil, defective layer, a hole, high-energy stream, honeycomb panels

Abstract

The study shows the options and proves feasibility of applying the water jet guided laser method in perforating 55 micron-thick aluminum foil AMg-2N that is used in corrugated sets of honeycomb panels for aircraft and spacecraft interiors. It is proved that the modes of treatment have a significant effect on the durability characteristics of the material since they predetermine the thickness of the defective layer at the obtained holes. An optimal choice of the pulse rate and the flow rate can reduce the width of the defective layer by 20–50 % and bring it down to 0.035 mm. Intensive cooling of the perforated zone can also eliminate cracking at the edges, thereby increasing the tensile strength up to 229 MPa, which is close to the strength value of the supplied material; meanwhile relative elongation remains virtually unchanged.

The experimental research used LBC-400-5. The laser-jet stream was formed due to the original head design that minimizes the loss of the output power.

The research has proved that deviation of the flashed hole from the circumference is minimized by an adjustment of the laser-jet head, i. e. combining the axes of the laser beam and the jet of fluid. The use of nozzles with profile cut (in the form of a rectangle with rounded corners, oval, or triangle) produces an appropriate shape of the holes, which is very important for manufacturing honeycomb panels with an aperiodically curvilinear corrugated-core structure.

Author Biographies

Владимир Юрьевич Холодный, Mykhailo Ostohradskyi Kremenchuk National University 20 Pershotravneva str., Kremenchuk, Ukraine, 39600

Assistant

Machinery and technological equipment design department

Александр Федорович Саленко, Mykhailo Ostohradskyi Kremenchuk National University 20 Pershotravneva str., Kremenchuk, Ukraine, 39600

Doctor of technical sciences, Professor, head of the department

Machinery and technological equipment design department

References

  1. Slivinsky, V. I., Tkachenko, G. V., Slivinsky, M. V. (2005). Effektivnost primeneniya sotovyih konstruktsiy v letatelnyih apparatah. Vestnik SibGAU, 3, 169–173.
  2. Kolganov, I. M., Dubrovskiy, P. V., Arhipov, A. N. (2003). Tehnologichnost aviatsionnyih konstruktsiy, puti povyisheniya. Part 1. Uchebnoe posobie. UlGTU, 148.
  3. Voronko, V. V., Zhovnovatyuk Ya. S. (2015). Eksperimentalnoe issledovanie tochnosti otverstiy, perforiruemyih v listovyih detalyah aviatsionnyih dvigateley sposobom elektrogidravlicheskoy shtampovki. Voprosyi proektirovaniya i proizvodstva konstruktsiy letatelnyih apparatov, 3, 56–64.
  4. Gindin, P. D., Belskiy, A. B., Kovalev, S. V., Savchenko, A. M., Sobolev V. P. (2006). Lazernyie nanomaterialyi i tehnologii: Monografiya. MGTU im. N. E. Baumana. Moscow, 221.
  5. Hartmann, C., Hambach, N., Jüngst, M., Keller, S., Holtkamp, J., Gillner, A. (2013). High Density Perforation of Thin Al-Foils with Ultra Short Pulse Lasers. Journal of Laser Micro/Nanoengineering, 8 (3), 266–270. doi: 10.2961/jlmn.2013.03.0013
  6. Naeem, M., Wakeham, M. (2010). Laser Percussion Drilling of Coated and Uncoated Aerospace Materials with a High Beam Quality and High Peak Power Lamp Pumped Pulsed Nd:YAG Laser. 29th International Congress on Applications of Lasers & Electro-optics.
  7. Walthe, K., Brajdic, M., Dietrich, J., Hermans, M., Witty, M., Horn, A., Kelbassa, I., Poprawe, R. (2008). Manufacturing of shaped holes in multi-layer plates by Laser-drilling. PICALO, 789–794.
  8. Yilbas, B. S. (2013). Laser Drilling: Practical applications. Spronger, 90. doi: 10.1007/978-3-642-34982-9
  9. Synova, S. A. (2013). Natural diamond cutting using water jet-guided laser. Available at: http://www.synova.ch/fileadmin/user_upload/conferences/2011_LIM2011_Synova_final.pdf
  10. Perrottet, D., Spiege, A., Wagner, F., Housh, R., Richerzhagen, B., Manley, J. (2004). Particle-free semiconductor dicing using the water jet guided laser technology. Proceedings of the 23rd International Congress on Applications of Lasers and Electro-Optics 2004. Synova SA: Switzerland.
  11. Pauchard, A., Marco, M., Carron, B., Suruceanu, G., Richerzhagen, B., Brule, A., Kling, N. (2008). Recent developments in the cutting of ultra hard materials using water jet-guided laser technology. ALAC 2008 conference proceeding.
  12. Brule, A., Deschamps, J., Marco, M., Richerzhagen, B., Levine, H. (2008). Laser MicroJet® for High Precision Drilling of Mechanical Devices such as Fuel Injection Nozzles. Proceedings of LPM2008-the 9th International Symposium on Laser Precision Microfabrication.
  13. Mullick, S., Madhukar, Y. K., Roy, S., Nath, A. K. (2013). Development of a water-jet assisted underwater laser cutting process. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 7 (4), 365–371.
  14. Salenko, O. F., Dudyuk, V. O., Holodniy, V. Yu. (2011). Pristriy dlya vikonannya struminno-promenevoyi obrobki materialiv. Pat. 63732 U Ukrayina, MPK V24V 41/00. Zayavnik i patentopriymach Kremenchutskiy natsionalniy universitet imeni Mihayla Ostrogradskogo, 9.
  15. Richerzhagen, B. (1996). Complete model to simulate the thermal defocusing of a laser beam focused in water. Optical Engineering, 35 (7), 2058–2066. doi: 10.1117/1.600995
  16. Salenko, O., Schetinin, V., Fomovska, L. (2013). Jets methods of cutting carbide and super hard material. Germani, Lambert Academic Publisher, 118.
  17. Salenko, А., Kholodnyi, V. (2015). Changing the spot of local destruction of samples at water jet guided laser processing with appropriate profiling jet. Visnik NTUU «KPI». Seriya mashinobuduvannya, 1 (73), 57–64.
  18. Schulz, W., Niessen, M., Eppelt, U., Kowalick, K. (2009). Simulation of laser cutting. Springer Series in Materials Science, 119, 21–69. doi: 10.1007/978-1-4020-9340-1_2
  19. Salenko, A., Holodnyiy, V. (2013). Osobennosti metodiki issledovaniya profilnyih otverstiy malogo razmera dlya protsessa lazehno-struynoy obrabotki materialov. Unitex – 2013: International scientific conference. Gabrovo, III-139–III-145.
  20. OOO “HOLIT Deyta Sistems” (2013). Mikrosistema sbora dannyih m-DAQ. Available at: http://www.holit.ua/ru/products/comp/ind/expansion/adc/vneshnie/2842.html/
  21. OOO “DKL”. (2015). Tenzodatchik KELI DEG 50kg. Available at: http://www.dkl.kiev.ua/product/tenzodatchik-keli-deg-50kg/
  22. Jahubar, A., Pandey, S. K., Pandey, K. S. (2014). Orientation Effects of Stress Concentrators on the Material Deformation Behaviour during Tensile Testing of Thin AISI 316 Stainless Steel Strips. International Journal of Modern Engineering Research (IJMER), 4 (10), 43–48.

Published

2016-02-15

How to Cite

Холодный, В. Ю., & Саленко, А. Ф. (2016). The water jet guided laser method in punching honeycomb cores for Aerospace sandwich panels. Eastern-European Journal of Enterprise Technologies, 1(5(79), 19–30. https://doi.org/10.15587/1729-4061.2016.59870