The use of controlled cracking to improve the efficiency of waterjet cutting

Authors

  • Вадим Николаевич Орел Mykhailo Ostohradskyi Kremenchuk National University 20 Pershotravneva str., Kremenchuk, Ukraine, 39600, Ukraine https://orcid.org/0000-0002-8775-3253
  • Виктор Терентиевич Щетинин Mykhailo Ostohradskyi Kremenchuk National University 20 Pershotravneva str., Kremenchuk, Ukraine, 39600, Ukraine https://orcid.org/0000-0003-0764-0396
  • Александр Федорович Саленко Mykhailo Ostohradskyi Kremenchuk National University 20 Pershotravneva str., Kremenchuk, Ukraine, 39600, Ukraine https://orcid.org/0000-0002-5685-6225
  • Николай Николаевич Яцина Mykhailo Ostohradskyi Kremenchuk National University 20 Pershotravneva str., Kremenchuk, Ukraine, 39600, Ukraine https://orcid.org/0000-0001-9987-2754

DOI:

https://doi.org/10.15587/1729-4061.2016.59907

Keywords:

hydro-abrasive treatment, processing along a curvilinear contour, controlled cracking, stress state, mechatronic devices

Abstract

The study focuses on the possibilities of increasing the production efficiency of waterjet cutting with the aid of mechatronic systems. We have proved the effect of different types of loads and the form of the cut on the cracks in sheet workpieces. A computer simulation of a workpiece load facilitated identifying stress zones along the cutting contours. It is proved that controlling a non-stationary stress state allows limiting the crack growth rate. Increased energy efficiency and performance parameters in a complex-contour cutting of workpieces with an abrasive fluid jet is an important task for operating hydroabrasive technological complexes manufactured in a wide range by foreign and domestic firms. It is found that the most effective cutting is that with pre-loading of sheet blanks with a tensile strength up to 90 MPa. If the sheet thickness exceeds 5-6 mm the effect decreases, whereas materials thicker than 15 mm are processed with additional energy consumption. Thus, it can be assumed that when preloading devices control the stress-strain state (SSS) of the cutting area in quasi-elastic sheet workpieces the processing performance increases and the quality of the cut improves.

Author Biographies

Вадим Николаевич Орел, Mykhailo Ostohradskyi Kremenchuk National University 20 Pershotravneva str., Kremenchuk, Ukraine, 39600

Postgraduate student

Machinery and technological equipment design department

Виктор Терентиевич Щетинин, Mykhailo Ostohradskyi Kremenchuk National University 20 Pershotravneva str., Kremenchuk, Ukraine, 39600

PhD, Associate professor

Machinery and technological equipment design department

Александр Федорович Саленко, Mykhailo Ostohradskyi Kremenchuk National University 20 Pershotravneva str., Kremenchuk, Ukraine, 39600

Doctor of technical sciences, Professor, head of the department

Machinery and technological equipment design department

Николай Николаевич Яцина, Mykhailo Ostohradskyi Kremenchuk National University 20 Pershotravneva str., Kremenchuk, Ukraine, 39600

PhD, Associate professor

Machinery and technological equipment design department

References

  1. Miller, R. (1991). Waterjet Cutting: Technology and Industrial Applications. Fairmont Press, 154.
  2. Brenner, V. A., Zhabin, A. B., Pushkarev, A. E., Schegolevskiy, M. M. (2003). Gidrostruynyie tehnologii v promyishlennosti. Gidro-abrazivnoe rezanie gornyih porod. Moscow: Izdatelstvo Moskovskogo gosudarstvennogo gornogo universiteta, 279.
  3. Ryikunov, A. N., Yablunovskiy, Ya. Yu. (2009). Povyishenie effektivnosti gidroabrazivnoy obrabotki na osnove modelirovaniya protsessov mikrorazrusheniya materialov. Spravochnik. Inzhenernyiy zhurnal, 4, 14–17.
  4. Orel, V. N., Shchetinin, V. T., Fomovska, O. V., Salenko, A. F. (2015). Using of mechanotronics devices for working movements workpiecеs during waterjet cutting. Journal of the Technical University of Gabrovo, 52, 35–42.
  5. Matvienko, Yu. G. (2006). Modeli i kriterii mehaniki razrusheniya. Moskva: fizmalit, 328.
  6. Lebedev, A. A., Muzyika, N. R. (2001). Nesuschaya sposobnost plastinyi s treschinoy pri dvuhosnom rastyazhenii. Problemyi prochnosti, 2, 20–27.
  7. Petko, I. V., Belyaev, S. V., Kedrovskiy, B. G., Klaptsov, Yu. V. (1988). Razrabotka i issledovanie ustanovki dlya raskroya materialov gidrostruey vyisokogo davleniya. UkrNIKTIbyit, 161.
  8. Stepanov, Yu. S., Barsukov, G. V., Alyushin, E. G. (2012). Sovremennyie tehnologii gidro- i gidroabrazivnoy obrabotki zagotovok. Naukoemkie tehnologii v mashinostroenii, 6, 15–20.
  9. Antonenko, O. V. (2007). Strukturno-parametrichniy sintez gidroriznogo verstata iz sistemoyu kontrolyu zoni struminnoyi eroziyi. Progressivnyie tehnologii i sistemyi mashinostroeniya, 47, 144–156.
  10. Agus, M., Bortolussi, A. (1995). Abrasive perfomance in rock cutting with AWJ and ASJ. Proc. 8-th American Water Jet Conference. St. Louis, 31–48.
  11. Lamm, T. V., Isachenkov, E. I. (1998). Povyishenie tochnosti detaley iz lista pri gibke-formovke elastichnoy sredoy Tehnicheskie problemyi proizvodstva LA i dvigateley. Kazan, 20–29.
  12. David, A., Summers, D. (1995). Waterjetting. Technology. Printed in Great Britain by the Alden Press. Oxford, 882.
  13. Salenko, O., Schetynin, V., Khorolska, M. (2014). Improving accuracy of profile hydro-abrasive cutting of plates of hardmetals and superhard materials. Journal of Superhard Materials, 3 (36), 73–84. doi: 10.3103/s1063457614030083
  14. Salenko, A. F., Fomovskaya, A. V. (2009). Kachestvo obrabotki materialov gidroabrazivnoy struey. Oborudovanie i instrument, 1, 16–19.
  15. Tihomirov, R. A., Guenko, V. S. (1984). Gidrorezanie nemetallicheskih materialov. Kyiv: Tehnika, 150.
  16. Svirskiy, Yu. O. (1976). Metode rascheta skorosti rasprostraneniya treschinyi pri nestatsionarnom povrezhdenii. Uchenyie zapiski TsAGI, VII (4), 81–96.

Published

2016-02-21

How to Cite

Орел, В. Н., Щетинин, В. Т., Саленко, А. Ф., & Яцина, Н. Н. (2016). The use of controlled cracking to improve the efficiency of waterjet cutting. Eastern-European Journal of Enterprise Technologies, 1(7(79), 45–56. https://doi.org/10.15587/1729-4061.2016.59907

Issue

Section

Applied mechanics