А theoretical analysis of chemisorption of sulfur (IV) oxide. Rationale for the choice of an efficient mass-exchange apparatus

Authors

  • Віктор Теофілович Яворський Lviv Polytechnic National University 12 Bandera str., Lviv, Ukraine, 79013, Ukraine
  • Андрій Богданович Гелеш Lviv Polytechnic National University 12 Bandera str., Lviv, Ukraine, 79013, Ukraine https://orcid.org/0000-0003-3310-0940
  • Іван Євгенійович Яворський Lviv Polytechnic National University 12 Bandera str., Lviv, Ukraine, 79013, Ukraine https://orcid.org/0000-0002-7310-8288
  • Ярослав Андрійович Калимон Lviv Polytechnic National University 12 Bandera str., Lviv, Ukraine, 79013, Ukraine https://orcid.org/0000-0002-4080-6274

DOI:

https://doi.org/10.15587/1729-4061.2016.60312

Keywords:

sulfur (IV) oxide, purification of gas emissions, mass-exchange apparatus, chemical adsorption/chemisorption, dust collection, absorbent

Abstract

Since the European Union has tightened its environmental legislation requirements to the maximum allowable industrial emissions, there is a necessity to devise efficient treatment technologies for exhaust SO2-containing gases. The study presents a critical analysis of industrial methods of disposal of sulfur (IV) oxide from exhaust gases. It is proved that the liquid-oxidative method using NaOH as an intermediate absorbent and air oxygen as an oxidant ensures optimal utilization of gases with low concentration of SO2. The analysis of the related references and the performed calculations show that chemical adsorption of SO2 requires high pH and low temperature, whereas oxidation of the chemisorbed SO2 – low pH and high temperature.

The study justifies economic efficiency of combining the operations of dust collection, chemisorption and oxidation of the chemisorbed SO2 in a single unit. A thorough analysis of the existing mass-exchange equipment and the made calculations allow implementing the process. We have suggested new technical solutions and an efficient main unit of a horizontal apparatus with scoop-shaped dispersants that fully meets the physical and chemical characteristics of the above processes. The proposed device facilitates an upstream phase movement, thereby providing the required modes for dust collection, chemisorptions, and SO2 oxidation. The unit has low resistance to mass transfer from the gas and the fluid films. Due to the direct supply of energy to the fluid and the non-stationary mode of dispersion, the apparatus has little hydraulic resistance and low energy costs. The theoretical studies minimize the number of experimental research and scientifically justify the choice of a technologically appropriate mode of purifying exhaust gases from SO2.

Author Biographies

Віктор Теофілович Яворський, Lviv Polytechnic National University 12 Bandera str., Lviv, Ukraine, 79013

Doctor of Technical Sciences, Professor

Department of Chemistry and Technology of Inorganic Substances

Андрій Богданович Гелеш, Lviv Polytechnic National University 12 Bandera str., Lviv, Ukraine, 79013

PhD, Associate Professor

Department of Chemistry and Technology of Inorganic Substances

Іван Євгенійович Яворський, Lviv Polytechnic National University 12 Bandera str., Lviv, Ukraine, 79013

Postrgaduate student

Department of Chemistry and Technology of Inorganic Substances

Ярослав Андрійович Калимон, Lviv Polytechnic National University 12 Bandera str., Lviv, Ukraine, 79013

Doctor of Technical Sciences, Professor

Department of Chemistry and Technology of Inorganic Substances

References

  1. Yavorskyi, V. T. (2010) Tekhnolohiia sirky i sulfatnoi kysloty Lviv: Vydavnytstvo Natsionalnoho universytetu “Lvivska politekhnika”, 404.
  2. Smith, S. J., van Aardenne, J., Klimont, Z., Andres, R. J., Volke, A., Delgado Arias, S. (2011). Anthropogenic sulfur dioxide emissions: 1850–2005. Atmospheric Chemistry and Physics, 11 (3), 1101–1116. doi: 10.5194/acp-11-1101-2011
  3. Directive 2010/75/eu of the european parliament and of the council of 24 November 2010 on industrial emissions (integrated pollution prevention and control) (2010). Official Journal of the European Union, L 334/17, 17–119. Available at: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32010L0075
  4. Bubnov, V. P., Dovnar, D. A. (2013). Issledovanie jekologo–jekonomicheskih pokazatelej sistem ochistki gazovyh vybrosov ot dioksida sery Jenergetika. Izvestija vysshih uchebnyh zavedenij i jenergeticheskih ob’edinenij SNG, 65–72.
  5. Siagi, Z. O., Mbrawa, М. (2008). An overview of SO2 emissions reduction techniques. R&D Journal of the South African Institution of Mechanical Engineering. 24 (1), 26–33. Available at: http://www.saimeche.org.za/?page=RD_2008
  6. Smotraev, R. V. (2013). Issledovanie termodinamicheskogo ravnovesija processa absorbcii dioksida sery jelektrohimicheski obrabotanym poglotitel'nym rastvorom. Voprosy himii i himicheskoj tehnologii, 2, 92–96.
  7. Smotraev, R. V. (2013). Opredelenie kineticheskih harakteristik processa absorbcii dioksida sery jelektrohimicheski obrabotanym poglotitel'nym rastvorom. Pratsi Odeskoho politekhnichnoho universytetu, 3, 222–226.
  8. Mihajlenko, G. G., Mironov, D. V., Sigal, I. Ja. (2001). Zashhita vozdushnogo bassejna ot oksidov sery. Odessa: Astroprint, 84.
  9. Cejtlin, M. A., Rajko, V. F., Tovazhnjanskij, L. L., Shaporev, V. P. (2005). Absorbcionnaja ochistka gazov v sodovom proizvodstve. Har'kov: NTU «KhPI», 144.
  10. Tsouris, C., Porcelli, J. V.(2003). Process Intensification – Has Its Time Finally Come? Chemical Engineering Progress, 99, 50–55. Available at: https://www.researchgate.net/publication/283147973_Process_Intensification_–_Has_Its_Time_Finally_Come
  11. Yavorskyi, V., Неlesh, А., Yavorskyi, I.(2013). Principals for the creation of effective and economically sound treating processes of industrial emissions with sulfur oxide low content. Chemistry & chemical technology, 7 (2), 205–211.
  12. Ramm, V. M. (1976). Absorbcija gazov. 2ndedition. Moscow: Himija, 656.
  13. Kafarov, V. V. (1979). Osnovy massoperedachi: Sistemy gaz–zhidkost', par– zhidkost', zhidkost'–zhidkost' Moscow: Vysshaja shkola, 439.
  14. Sander, R. (1999). Compilation of Henry’s Law Constants for Inorganic and Organic Species of Potential Importance in Environmental Chemistry. Air Chemistry Department Max–Planck Institute of Chemistry. Available at: http://www.henrys-law.org/henry-3.0.pdf
  15. Solov'ev, А. K., Miheev, V. O., Pulikov, P. S. (2014). Ochistka dymovyh gazov ot oksidov sery. Vestnik Sibirskogo gosudarstvennogo industrial'nogo universiteta, 3 (9), 33–36.
  16. Grigor'ev, L. N., Burenina, T. I.(2013). Osnovy rascheta oborudovanija dlja himicheskoj ochistki i obezvrezhivanija vybrosov. Sankt–Peterburg: SPb GTU RP. SPb, 110.
  17. Shvydkij, V. S., Ladygichev, M. G. (2002). Ochistka gazov: spravochnoe izdanie. Moscow: Teplojenergetik, 640.
  18. Yavorskyi, V. T., Helesh, A. B., Yavorskyi, I. Ie. (2014). Ochyshchennia haziv z nyzkym vmistom SO2 vodnymy rozchynamy hidrooksydiv. Aktualni zadachi suchasnykh tekhnolohii, 41–42.
  19. Golodov, V. A., Kashnikova, L. V. (1988). Okislenie dioksida sery v vodnyh rastvorah. Uspehi himii, LVII (11), 1796–1813.
  20. Hasanov, V. V., Ryzhova, G. L., Mal'ceva, E. V. (2004). Issledovanie antiokislitel'nyh svojstv soedinenij s ispol'zovaniem reakcii okislenija sul'fita natrija. Himija rastitel'nogo syr'ja, 3, 77–85.
  21. Bortnikova, N. A., Mahotkin, I. A., Pavlova, K. A. et. al. (2013). Mehanizm, kinetika i sposob intensifikacii processa hemosorbcii SO2 sodovym rastvorom. Vestnik Kazanskogo tehnologicheskogo universiteta, 7, 222–224.
  22. Chertkov, B. A. (1966). Issledovanija v oblasti okislenija sul'fit–bisul'fitnyh rastvorov. Issledovanie po himii i tehnologii udobrenij, pesticidov, solej. Moscow: Nauka, 99–112.
  23. Cherchincev, V. D., Savina, Ju. E. (2012). Sovershenstvovanie absorbcionnyh processov ulavlivanija dioksida sery iz gazov aglomeracionnogo proizvodstva. Vestnik MGTU im. G. I. Nosova, 1, 21–23.
  24. Vasil'ev, M. I., Surkov, A. S., Shaporev, V. P. (2009). Intensifikacija massoobmena geterogennyh sistem. Visnyk Natsionalnoho tekhnichnoho universytetu Ukrainy «Kyivskyi politekhnichnyi instytut», 57, 164–173.
  25. Lavrinenko, A. A. (1989). Gidrodinamika i massoobmen v skrubbernoj kamere s S–obraznymi razbryzgivateljami [Linguistic description and evaluation of information languages]. Lviv, 198.
  26. Borisov, I. I., Halatov, A. A. (2007). Centrobezhnye kontaktory: osnovnye tipy i prakticheskoe primenenie. Obzor. Promyshlennaja teplotehnika, 29, 29–33.
  27. Al Hajjat Mohammed Nadim Kasim (2014). Experimental study of mass exchange characteristics of vortex spray mass exchange devices. Eastern-European Journal of Enterprise Technologies, 4/7(70), 46–50. doi: 10.15587/1729–4061.2014.26252
  28. Rao, D. P., Bhowal, A., Goswami, P. S. (2004). Process Intensification in Rotating Packed Beds (HIGEE): An Appraisal. Industrial Engineering and Chemistry Research, 43 (4), 1150–1162. doi: 10.1021/ie030630k
  29. Laznenko, D. O. (2011). Hidrodynamika ta masoobmin v dysperhuiuchomu kontaktnomu prystroi vidtsentrovoho masoobminnoho aparata [Linguistic description and evaluation of information languages]. Sumy, 178.
  30. Chen, J.-F. (2009). The Recent Developments in the HiGee Technology. Research Center of the Ministry of Education for High Gravity Engineering & Technology Beijing University of Chemical Technology, GPE–EPIC. Available at: http://inpact.inp-toulouse.fr/GPE-EPIC2009/images/presentation_chen.pdf
  31. Wang, G. Q., Xu, Z. C., Ji, J. B. (2011). Progress on Higee distillation—Introduction to a new device and its industrial applications. Chemical Engineering Research and Design, 89 (8), 1434–1442. doi: 10.1016/j.cherd.2011.02.013
  32. Agarwal, L., Pavani, V., Rao, D. P., Kaistha, N. (2010). Process Intensification in HiGee Absorption and Distillation: Design Procedure and Applications. Industrial & Engineering Chemistry Research, 49 (20), 10046–10058. doi: 10.1021/ie101195k
  33. Makarov, Ju. I., Troshkin, O. A., Planovskij, A. A. (1972). O dline neraspavshegosja uchastka strui, vytekajushhej iz otverstija v bokovoj stenke vrashhajushhegosja cilindra. Teoreticheskie osnovy himicheskoj tehnologii, 6 (5), 791–792.
  34. Yavorskyi, V. T., Kalymon, Ia. A., Znak, Z. O., Helesh, A. B.(2008). Doslidzhennia protsesu ochyshchennia vykydnykh haziv zalizookysnykh kolorovykh pihmentiv na ukrupnenii eksperymentalnii ustanovtsi, 360–361.
  35. Yavorskyi, V., Неlesh, А. (2015). Тheoretical analysis of efficiency of horizontal apparatus with bucket–like dispersers in the dust trapping system. Chemistry & chemical technology, 9 (4), 471–478.

Published

2016-02-21

How to Cite

Яворський, В. Т., Гелеш, А. Б., Яворський, І. Є., & Калимон, Я. А. (2016). А theoretical analysis of chemisorption of sulfur (IV) oxide. Rationale for the choice of an efficient mass-exchange apparatus. Eastern-European Journal of Enterprise Technologies, 1(6(79), 32–40. https://doi.org/10.15587/1729-4061.2016.60312

Issue

Section

Technology organic and inorganic substances