Improving the transport cyber security under destructive impacts on information and communication systems

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.60711

Keywords:

information and communication environment of transport, cyber security, information security, threat detection

Abstract

The information and communication environment of transport (ICET) is focused on interaction with other sectors of the economy in order to reduce delays in shipping, handling of marine and river vessels, containers, wagons, vans through the use of electronic payment systems, "Client-Bank", etc. Possible failures, caused by cyber attacks in systems of such level of complexity require new research of information security (IS) of ICET with emphasis on accessibility, stability, and integrity of the information stored and processed in information systems (IS) and the automated control systems (ACS) of the transport industry.

The paper presents the results of research aimed at developing cyber threat detection methods and models for ICET and enhancing their stability under formation of a single information space, introduction of new and modernization of existing IS and ACS in transport and increase in the number of destabilizing effects on the information availability, safety, and integrity. The method of intelligent cyber threat detection based on discrete procedures using the apparatus of logic functions and fuzzy sets is proposed. It will improve the cyber attack detection efficiency, and can also be used to design new hardware and software solutions for systems of cyber defense of ICET.

Author Biographies

Валерій Анатолійович Лахно, European University 16B Academician Vernadskiy Blvd., Kyiv, Ukraine, 03115

Doctor of Technical Sciences, Associate professor

Department of Managing Information Security

Андрій Володимирович Грабарєв, European University 16B Academician Vernadskiy Blvd., Kyiv, Ukraine, 03115

Candidate of Economic Sciences

Dean of the Faculty of Information Systems and Technology

References

  1. U. S. Department of Transportation, Research and Innovative Technology Administration, "Intelligent Transportation Systems (ITS) Strategic Plan: Background and Processes" (2010). Available at: http://www.its.dot.gov/strategic_plan2010_2014/ppt/strategic_backgroundv2.ppt
  2. Sadek, A. W., “Brian” Park, B., & Cetin, M. (2014). Special Issue on Cyber Transportation Systems and Connected Vehicle Research. Journal of Intelligent Transportation Systems, 20 (1), 1–3. doi: 10.1080/15472450.2014.889914
  3. Transportation & Logistics 2030. Vol. 4: Securing the supply, 254–286.
  4. Dudykevych, V. B., Prokopyshyn, I. A., Chekurin, V. F. (2012). Problemy ocinky efektyvnosti system zakhystu. Visnyk Nacionaljnogho universytetu "Ljvivsjka politekhnika".Ser.: Avtomatyka, vymirjuvannja ta keruvannja, 741, 118–122.
  5. Korchenko, A. A. (2013). Sistema formirovaniya nechetkih etalonov setevyih parametrov. Zahist Informatsiyi, 15 (3). 240–246.
  6. Sommestad, T., Karlzén, H., Hallberg, J. (2015). A Meta-Analysis of Studies on Protection Motivation Theory and Information Security Behaviour. International Journal of Information Security and Privacy, 9 (1), 26–46. doi: 10.4018/ijisp.2015010102
  7. Ghryshhuk, R. V. (2011). Ataky na informaciju v informacijno-komunikacijnykh systemakh. Suchasna specialjna tekhnika, 1 (24), 61–66.
  8. Yakovyna, V., Fedasyuk, D., Nytrebych, O., Parfenyuk, I., Matselyukh, V. (2014). Software Reliability Assessment Using High-Order Markov Chains. International Journal of Engineering Science Invention, 3 (7), 1–6.
  9. Car hacking: The security threat facing our vehicles (2014). Popular Science, 67–73.
  10. Kharchenko, V. P., Chebotarenko, Ju. B., Korchenko, O. Gh., Pacira, Je. V., Ghnatjuk, S. O. (2009). Kyberterroryzm na avyacyonnom transporte. Problemy informatyzaciji ta upravlinnja, 4 (28), 131–140.
  11. Vilskiy, G. B. (2012). Informatsionnyie riski sudovozhdeniya. Nauk. VIstnik HDMA, 1(4), 17–26.
  12. Miroshnik, M. A. (2015). Rozrobka metodiv otsinki efektivnosti zahistu Informatsiyi v rozpodIlenih komp'yuternih sistemah. Informatsiyno-keruyuchi sistemi na zaliznichnomu transporti: naukovo-tehnichniy zhurnal, 4 (113), 39–43.
  13. Kryilova, V. A., Miroshnik, A. H. (2015). Razrabotka metodov otsenki effektivnosti sistem zaschityi informatsii v raspredelennyih kompyuternyih sistemah. Informatsiyno-keruyuchi sistemi na zaliznichnomu transporti: naukovo-tehnichniy zhurnal, 2 (111), 43–51.
  14. 2015 Cyber Attacks Statistics (2016). Available at: http://www.hackmageddon.com/2016/01/11/2015-cyber-attacks-statistics/
  15. Osnovnaya statistika za 2015 god (2016). Available at: https://securelist.ru/files/2015/12/KSB_2015_Stats_FINAL_RU.pdf
  16. MITRE Research Program. Available at: http://www.mitre.org
  17. Walk, T. Cyber-attack protection for pipeline SCADA systems (2012). Pipelines International digest, 5–8.
  18. Maras, M.-H. (2012). Cybercrime Laws: Which Statute for Which Crimes. Computer Forensics: Cybercriminals, Laws, and Evidence. Sudbury, MA: Jones & Bartlett Learning, 104–106.
  19. Creating trust in the digital world EY’s Global Information Security Survey 2015. Available at: http://www.ey.com/Publication/vwLUAssets/ey-global-information-security-survey-2015/$FILE/ey-global-information-security-survey-2015.pdf
  20. Korchenko, O. Gh., Pacira, Je. V., Ghnatjuk, S. O., Kinzerjavyj, V. M., Kazmirchuk, S. V. (2010). Oznakovyj pryncyp formuvannja klasyfikacij kiberatak. Visnyk Skhidnoukrajinsjkogho nacionaljnogho universytetu imeni Volodymyra Dalja, 1, 32–38.
  21. Lahno, V. (2014). Ensuring of information processes’ reliability and security in critical application data processing systems. MEST Journal, 2 (1), 71–79. doi: 10.12709/mest.02.02.01.07

Published

2016-02-29

How to Cite

Лахно, В. А., & Грабарєв, А. В. (2016). Improving the transport cyber security under destructive impacts on information and communication systems. Eastern-European Journal of Enterprise Technologies, 1(3(79), 4–11. https://doi.org/10.15587/1729-4061.2016.60711

Issue

Section

Control processes