Investigation of the process of stabilization of the rotational axis of the lifting body by the pendulum autobalancer

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.63955

Keywords:

lifting body, pendulums, motion stability, spacecraft, passive autobalancer, damper

Abstract

The paper investigates the conditional stability of the basic steady motions of the spatial model of an isolated system, consisting of a rotating lifting body, a particle, creating its static unbalance and two identical mathematical pendulums, mounted on a longitudinal axis of the lifting body and moving in the plane of the static unbalance, the relative motion of which is hindered by the viscous resistance forces. It is found that in the case where unbalance is present and pendulums can correct it with a certain margin, there is one basic motion. In the absence of unbalance, there is a one-parameter family of basic motions. In the case of maximum unbalance, which can be corrected by pendulums, there is one basic motion, but it generates a pseudo family of basic motions. Also, it is revealed that some basic motions, if isolated, or a family or a pseudo family of basic motions is conditionally asymptotically stable. In the absence of unbalance, the presence of a single zero root of the characteristic equation does not affect the stability of a one-parameter family of basic motions and is responsible for the transition from one steady motion of a family to another. In the case of maximum unbalance, the presence of a single zero root of the characteristic equation does not affect the stability of the basic motion and is responsible for the transition from one steady motion of a pseudo family to another. Transition processes are oscillatory-damped.

Author Biography

Vladimir Pirogov, Kirovograd National Technical University 8 University ave., Kirovograd, Ukraine, 25030

Сandidate of physical and mathematical sciences, Associate professor

Department of machine parts and applied mechanics

References

  1. Artjuhin, Ju. P., Kargu, L. I., Simaev, V. L. (1979). Control systems of spacecraft stabilized rotation. Moscow: Nauka, 296.
  2. Popov, V. I. (1986). Systems of orientation and stabilization of spacecraft. Moscow: Mashinostroenie, 184.
  3. Huges, P. C. (2004). Spacecraft Attitude Dynamics. New York, Dover Publications, 585.
  4. Zinchenko, O. N. (2011). Small optical satellites DZZ. Available at: http://www.racurs.ru/?page=710
  5. Ovchinnikov, M. Y. (2007). Small this world. Kompyuterra, 15, 37–43.
  6. Small Satellites: A Revolution in Space Science (2014). Available at: http://www.kiss.caltech.edu/study/smallsat/KISS-SmallSat-FinalReport.pdf
  7. Small spacecraft information provision (2010). Moscow: Radiotehnika, 320.
  8. Makridenko, L. A., Volkov, S. N., Hodnenko, V. P.,et al. (2010). Conceptual questions of creation and application of small satellites. Questions of Electromechanics. Proceedings VNIIEM, 114 (1), 15–26.
  9. Gidlund, S. (2005). Design Study for a Formation-Flying Nanosatellite Cluster. Available at: http://epubl.ltu.se/1402-1617/2005/147/LTU-EX-05147-SE.pdf
  10. Sandau, R., Röser, H.-P., Valenzuela, A. (2008). Small Satellites for Earth Observation: Selected Contributions. Springer, 406. doi: 10.1007/978-1-4020-6943-7
  11. Small Spacecraft Technology State of the Art (2014). Available at: https://www.nasa.gov/directorates/spacetech/small_spacecraft/index.html
  12. Kargu, L. I. (1980). Systems angular stabilization of spacecraft. Moscow: Mashinostroenie, 172.
  13. Gritsenko, A. A. (2001). Using stabilized rotation of small satellites in the satellite communication systems for GEO and HEO orbits. Available at: http://www.spacecenter.ru/Resurses/IEEE_2001_2.doc
  14. Fonseca, I. M., Santos, M. C. (2002). SACI-2 Attitude Control Subsystem. INPE, 3, 197–209.
  15. Hubert, C., Swanson, D. (2001). Surface Tension Lockup in the IMAGE Nutation Damper – Anomaly and Recovery. Available at: http://image.gsfc.nasa.gov/publication/document/2001_hubert_swanson.pdf
  16. Reuter, G. S., Thomson, W. T. (1966). Rotational movement of passive spacecraft. Problems of the orientation of satellites. Moscow: Nauka, 336–350.
  17. Likins, P. W. (1966). Effects of energy dissipation on the free body motions of spacecraft, 70.
  18. Mirer, S. A., Sarychev, V. A. (1997). Optimal Parameters of a Spin-Stabilized Satellite with a Pendulum-Like Damper. Cosmic Research, 35 (6), 609–615.
  19. Cloutier, G. J. (1969). Nutation damper instability on spin-stabilized spacecraft. AIAA Journal, 7 (11), 2110–2115. doi: 10.2514/3.5565
  20. Jr., J. E. C., Thompson, J. A. (1980). Nutation Dampers vs Precession Dampers for Asymmetric Spacecraft. Journal of Guidance, Control, and Dynamics, 3 (1), 22–28. doi: 10.2514/6.1978-1401
  21. Kane, T. R., Likins, P. W., Levinson, D. A. (1983). Spacecraft Dynamics. McGraw-Hill, New York, 436.
  22. Thompson, J. M. T. (1985). Instabilities and Catastrophes in Science and Engineering. Moscow: Mir, 254.
  23. Janssens, F. L., van der Ha, J. C. (2011). On the stability of spinning satellites. Acta Astronautica, 68 (7-8), 778–789. doi: 10.1016/j.actaastro.2010.08.008
  24. Filimonikhin, G. B., Pirogov, V. V., Filimonikhina, I. I. (2007). Attitude stabilization of the rotational axis of a carrying body by pendulum dampers. International Applied Mechanics, 43 (10), 1167–1173. doi: 10.1007/s10778-007-0117-4
  25. Filimonikhin, G. B., Pirogov, V. V., Filimonikhina, I. I. (2008). Using passive autobalancing as the angle of nutation dampers rapidly rotating satellites. System design and analysis of aerospace technology: Proceedings. Publishing Dnepropetrovsk National University, VIII, 105115.
  26. Filimonikhin, G. B., Pirogov, V. V., Filimonikhina, I. I. (2013). Research of process of the elimination autobalancers of large nutation angles. Eastern-European Journal of Enterprise Technologies, 6/7(66), 34–38. Available at: http://journals.uran.ua/eejet/article/view/18705/17057
  27. Filimonikhin, G. B., Filimonikhina, I. I., Pirogov, V. V. (2014). Stability of Steady-State Motion of an Isolated System Consisting of a Rotating Body and Two Pendulums. International Applied Mechanics, 50 (4), 459–469. doi: 10.1007/s10778-014-0651-9
  28. Filimonikhin, G. B., Pirogov, V. V. (2005). Stabilization of the Rotation Axis of a Solid by Coupled Perfectly Rigid Bodies. International Applied Mechanics, 41 (8), 937–943. doi: 10.1007/s10778-005-0164-7
  29. Pirogov, V. V. (2015). Stability investigation of the steady motions of an isolated system, carrying out plane motion. Eastern-European Journal of Enterprise Technologies, 5/7(77), 9–20. doi: 10.15587/1729-4061.2015.49269
  30. Filimonikhina, I. I., Filimonikhin, G. B. (2007). Conditions for balancing a rotating body in an isolated system with automatic balancers. International Applied Mechanics, 43 (11), 1276–1282. doi: 10.1007/s10778-007-0132-5

Published

2016-04-23

How to Cite

Pirogov, V. (2016). Investigation of the process of stabilization of the rotational axis of the lifting body by the pendulum autobalancer. Eastern-European Journal of Enterprise Technologies, 2(7(80), 49–63. https://doi.org/10.15587/1729-4061.2016.63955

Issue

Section

Applied mechanics