Formalization of non-linear patterns of evolutionary ecosystem processes under anthropogenesis influence

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.64285

Keywords:

non-linear kinetics, ecosystem processes, models, anthropogenic factors, synergistic patterns

Abstract

The analysis of non-linear aspects of the kinetics of organic contaminants’ decomposition in an aquatic ecosystem has substantiated the destruction patterns for environmental pollutants with regard to the biotic component. The findings of studying transformations in oil fractions of porous matters concern a number of indicators that are related to the biotic component of the ecosystem and previously disregarded in the sample models. In particular, it concerns the extent of biodegradation, bioassimilation and biotoxication of the natural environment. The study has revealed that these indicators influence the quality of assessing the carrying capacity of an ecosystem.

The developed formalized model of synergistic patterns in the evolution of species allows us to consider the reconstructive potential of the corresponding ecosystem and a possibility to assimilate all types of pollutants due to the genesis of species and their populations. This entails that the model includes bifurcation of genetic variability, which manifests itself through an autocatalysis process of mutations at different organisation levels of living organisms under the influence of external environmental factors (including determinism of resources and their quality). The study has disclosed a possibility of formalizing the living systems of different taxonomic ranks. The modelling accounted for the factors of self-regulation and autocatalysis at different organisation levels of the population and organisms.

Author Biographies

Leonid Plyatsuk, Sumy State University 2 Rymskogo-Korsakova str., Sumy, Ukraine, 40007

Doctor of Technical Sciences, Professor, Head of the department

Department of applied ecology

Elizabeth Chernish, Sumy State University 2 Rymskogo-Korsakova str., Sumy, Ukraine, 40007

PhD, Senior Lecturer

Department of applied ecology

References

  1. Nikolos, G. (1990). Poznanie slozhnogo [Exploring Complexity]. Moscow: «Mir», 345.
  2. Fritef, K. (2003). Pautina zhizni. Novoe nauchnoe ponimanie zhivyh sistem [The Web of Life. New scientific understanding of living systems]. Kyiv : Sofiya, 336.
  3. Zimnitsky, A. V. (2003). Single model of nature is the future of modern modeling. Biosphere, 1. Available at : http://www.ihst.ru/~biosphere/03-1/Zimnigky.htm
  4. Barsky, V. G. (2002). Project is the international program "The dynamic model of the biosphere". Biosphere, 1. Available at: http://www.ihst.ru/~biosphere/Mag_1/model.htm
  5. Kolesnikov, A. A. (2005). Sinergeticheskie metody upravleniya slozhnymi sistemami: teoriya sistemnogo sinteza [Synergetic complex systems management methods: theory system synthesis]. Moscow: Editorial, 228.
  6. Sidorenko, E. S., Khalil, V. V. (2013). Fractals in modeling of environmental systems. Energoefektivnіst' v budіvnictvі ta arhіtekturі, 5, 125–129.
  7. Malineckij, G. G. (2009). Matematicheskie osnovy sinergetiki: haos, struktury, vychislitel'nyj ehksperiment [Mathematical Foundations of Synergetics: Chaos, structures, computational experiment]. Moscow: Knizhnyj dom «LIBROKOM», 312.
  8. Malineckij, G. G. (2012). Synergetics is from the past to the future. Model. i analiz inform. sistem, 19 (3), 5–31.
  9. Wang, S. L., Jin, X. L., Huang, Z. L., Cai, G. Q. (2015). Break-out of dynamic balance of nonlinear ecosystems using first passage failure theory. Nonlinear Dynamics, 80 (3), 1403–1411. doi: 10.1007/s11071-015-1951-2
  10. Maystruk, V., Abdella, K. (2011). Modelling the Effects of Pollution on a Population and a Resource in a Polluted Environment. Applied Mathematics, 2011, 1–31. doi: 10.5402/2011/643985
  11. Tian, D., Niu, S., Pan, Q., Ren, T., Chen, S., Bai, Y., Han, X. (2015). Nonlinear responses of ecosystem carbon fluxes and water-use efficiency to nitrogen addition in Inner Mongolia grassland. Functional Ecology, 30 (3), 490–499. doi: 10.1111/1365-2435.12513
  12. Destania, Y., Jaharuddin, Sianturi, P. (2015). Stability Analysis of Plankton Ecosystem Model: Affected by Oxygen Deficit. Applied Mathematical Sciences, 9 (81), 4043–4052. doi: 10.12988/ams.2015.53255
  13. Bratus', A. S., Novozhilov, A. S., Platonov, A. P. (2010). Dinamicheskie sistemy i modeli biologii [Dynamic systems biology models]. Moscow: FIZMATLIT, 400.
  14. Bratus', A. S., Novozhilov, A. S., Rodina, E. V. (2005). Diskretnye dinamicheskie sistemy i matematicheskie modeli v ehkologii [Discrete dynamical systems and mathematical models in ecology]. Moscow: MIIT, 139.
  15. Novozhilov, A. (2002). Mathematical model of interaction with the environment pollution. Moscow: MIIT, 84.
  16. Sokolov, E. M., Sheinkman, L. E., Dergunov, D. V. (2014). Nonlinear decay kinetics of phenolic compounds in the aquatic environment. Fundamental'nye issledovaniya, 9, 2677–2681.
  17. Civina, I. M. (2013). Prirodno-tehnogennye kompleksy i osnovy prirodoobustrojctva. Novocherkassk: NGMA, 79.
  18. Golovanov, A. I. (2001). Osnovy prirodoobustrojstva [Fundamentals of Environmental Engineering]. Moscow: Kolos, 214.
  19. El'kin, Yu. E. (2006). Autowave processes. Matematicheskaya biologiya i bioinformatika, 1 (1), 27–40.
  20. Aladjev, V. Z., Boica, V. K., Rouba, Y. A. (2008). Klassicheskie odnorodnye struktury: Teoriya i prilozheniya [Classical Cellular Automata: Theory and Applications]. Grodno: GrGU, 486.
  21. Gordienko, V. A., Starkov, M. V. (2011). Simulation of biospheric processes and prediction in ecology from the standpoint of synergy. Fizicheskie problemy ehkologii (ehkologicheskaya fizika), 17, 98–117.

Published

2016-04-30

How to Cite

Plyatsuk, L., & Chernish, E. (2016). Formalization of non-linear patterns of evolutionary ecosystem processes under anthropogenesis influence. Eastern-European Journal of Enterprise Technologies, 2(4(80), 25–31. https://doi.org/10.15587/1729-4061.2016.64285

Issue

Section

Mathematics and Cybernetics - applied aspects