Development of universal model of kinetics of bioremediation stationary process with substrate inhibition

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.65036

Keywords:

biochemical degradation, specific oxidation rate, macrokinetic model, pollution concentration, phenomenological approach, substrate inhibition

Abstract

The results of stationary laboratory experiments are analyzed on the basis of the specific (per unit biomass) degradation rate of environmental pollutants. The presence of substrate inhibition for both gaseous, and water-dissolved pollutants is revealed. The phenomenological approach, which takes into account two obvious phenomena in a simple form: the contact of a microorganism with the substrate molecule and the inhibitory effect of the environment on it is applied to the analytical description of the relationship between the bio-oxidation rate and the pollution concentration. Numerical values of empirical coefficients of relationships for the investigated processes are calculated.

The differential equation, describing the kinetics of biochemical degradation at the macro-level is proposed. The macrokinetic mathematical model of bioremediation is defined as a system of two functions, quantitatively reflecting the  pollutant specific oxidation rate-concentration relationship and the concentration-time relationship, and satisfying the relationship of these parameters in a differential form. The concentration-time relationship is determined in the form of both the numerical integration algorithm and the approximate formula. The relevance and versatility of the proposed model for the investigated processes are proved. The resulting model is the basis for the quantitative description of non-stationary processes in bioreactors.

Author Biographies

Anna Bakharevа, National technical university «Kharkov polytechnic institute» 21 Frunze str., Kharkiv, Ukraine, 61002

PhD, associate professor

Department of occupational safety and environmental 

Oleksіi Shestopalov, National technical university «Kharkiv polytechnic institute» 21, Kirpichov str., Kharkiv, Ukraine, 61002

PhD, associate professor

Department of chemical technique and industrial ecology

Olesya Filenko, National technical university «Kharkiv polytechnic institute» 21, Kirpichov str., Kharkiv, Ukraine, 61002

PhD, associate professor

Department of chemical technique and industrial ecology

Boris Kobilyansky, Teaching and Research Professional Pedagogical Institute of Ukrainian Engineering and Pedagogical Academy 9a Noskov str., Bakhmut, Ukraine, 84500

PhD, associate professor

Department of occupational safety and ecological safety 

References

  1. Shareefdeen, Z., Herner, B., Webb, D., Wilson, S. (2003). Hydrogen sulfide (H2S) removal in synthetic media biofilters. Environmental Progress, 22 (3), 207–213. doi: 10.1002/ep.670220319
  2. Shareefdeen, Z., Singh, A. (2005). Biotechnology for Odor and Air Pollution Control. Springer, Berlin. doi: 10.1007/b138434
  3. Ménard, C., Ramirez, A. A., Heitz, M. (2013). Kinetics of simultaneous methane and toluene biofiltration in an inert packed bed. Journal of Chemical Technology & Biotechnology, 89 (4), 597–602. doi: 10.1002/jctb.4162
  4. Park, S. Y., Brown, K. W., Thomas, J. C. (2004). The Use of Biofilters to Reduce Atmospheric Methane Emissions from Landfills: Part I. Biofilter Design. Water, Air, & Soil Pollution, 155 (1-4), 63–85. doi: 10.1023/b:wate.0000026522.36984.42
  5. Nelson, M., Bohn, H. L. (2011). Soil-Based Biofiltration for Air Purification:Potentials for Environmental and Space LifeSupport Application. JEP, 2 (8), 1084–1094. doi: 10.4236/jep.2011.28125
  6. Rojo, N., Muñoz, R., Gallastegui, G., Barona, A., Gurtubay, L., Prenafeta-Boldú, F. X., Elías, A. (2012). Carbon disulfide biofiltration: Influence of the accumulation of biodegradation products on biomass development. Journal of Chemical Technology & Biotechnology, 87 (6), 764–771. doi: 10.1002/jctb.3743
  7. Rondeau, A., Mandon, A., Malhautier, L., Poly, F., Richaume, A. (2012). Biopurification of air containing a low concentration of TEX: comparison of removal efficiency using planted and non-planted biofilters. Journal of Chemical Technology & Biotechnology, 87 (6), 746–750. doi: 10.1002/jctb.3730
  8. Andreasen, R. R., Nicolai, R. E., Poulsen, T. G. (2013). Pressure drop in biofilters as related to dust and biomass accumulation. Journal of Chemical Technology & Biotechnology, 88 (4), 733–733. doi: 10.1002/jctb.4049
  9. Papirio, S., Villa-Gomez, D. K., Esposito, G., Pirozzi, F., Lens, P. N. L. (2013). Acid Mine Drainage Treatment in Fluidized-Bed Bioreactors by Sulfate-Reducing Bacteria: A Critical Review. Critical Reviews in Environmental Science and Technology, 43 (23), 2545–2580. doi: 10.1080/10643389.2012.694328
  10. Oturan, M. A., Aaron, J.-J. (2014). Advanced Oxidation Processes in Water/Wastewater Treatment: Principles and Applications. A Review. Critical Reviews in Environmental Science and Technology, 44 (23), 2577–2641. doi: 10.1080/10643389.2013.829765
  11. Zagorskis, A., Vaiškūnaitė, R. (2014). An Investigation on the Efficiency of Air Purification Using a Biofilter with Activated Bed of Different Origin. Chemical and Process Engineering, 35 (4), 435–445. doi: 10.2478/cpe-2014-0033
  12. González-Sánchez, A., Arellano-García, L., Bonilla-Blancas, W., Baquerizo, G., Hernández, S., Gabriel, D., Revah, S. (2014). Kinetic Characterization by Respirometry of Volatile Organic Compound-Degrading Biofilms from Gas-Phase Biological Filters. Industrial & Engineering Chemistry Research, 53 (50), 19405–19415. doi: 10.1021/ie503327f
  13. Shareefdeen, Z., Aidan, A., Ahmed, W., Khatri, M. B., Islam, M., Lecheheb, R., Shams, F. (2010). Hydrogen Sulphide Removal Using a Novel Biofilter Media. World Academy of Science, Engineering and Technology, 62, 13–16.
  14. Shareefdeen, Z. M., Ahmed, W.& Aidan, A. (2011). Kinetics and Modeling of H2S Removal in a Novel Biofilter. Advances in Chemical Engineering and Science, 1 (2), 72–76. doi: 10.4236/aces.2011.12012
  15. Bonilla-Blancas, W., Mora, M., Revah, S., Baeza, J. A., Lafuente, J., Gamisans, X. et. al. (2015). Application of a novel respirometric methodology to characterize mass transfer and activity of H2S-oxidizing biofilms in biotrickling filter beds. Biochemical Engineering Journal, 99, 24–34. doi: 10.1016/j.bej.2015.02.030
  16. Romanovskij, Ju. M., Stepanova, N. V., Chernavskij, D. S. (2003). Matematicheskoe modelirovanie v biofizike. Moscow Izhevsk: Institut komp'juternih issledovanij, 402.
  17. Veillette, M., Ramirez, A. A., Heitz, M. (2012). Biofiltration of air polluted with methane at concentration levels similar to swine slurry emissions: Influence of ammonium concentration. Journal of Environmental Science and Health, Part A, 47 (7), 1053–1064. doi: 10.1080/10934529.2012.667327
  18. Surerus, V., Giordano, G., Teixeira, L. A. C. (2014). Activated sludge inhibition capacity index. Brazilian Journal of Chemical Engineering, 31 (2), 385–392. doi: 10.1590/0104-6632.20140312s00002516
  19. Krichkovska, L. V., Vaskovez, L. A., Gurenko, I. V. et. al. (2014). Proektni rishennya u rozrobzi aparativ biologichnoy ochistki gazopovitryanih vikidiv. Kharkіv: NTU «KhPI», 208.
  20. Baharеva, А. Yu., Shestopalov, O. V., Semenov, E. O., Bukatenko, N. O. (2015). Macrokinetic mathematical model development of biological treatment process of gasiform emissions. ScienceRise, 2/2 (7), 12–15. doi: 10.15587/2313-8416.2015.37057

Published

2016-04-11

How to Cite

Bakharevа A., Shestopalov, O., Filenko, O., & Kobilyansky, B. (2016). Development of universal model of kinetics of bioremediation stationary process with substrate inhibition. Eastern-European Journal of Enterprise Technologies, 2(10(80), 19–26. https://doi.org/10.15587/1729-4061.2016.65036