Mechanism of capacitive charge of electrodes on the basis of activated carbon materials in ZnI2 solution

Authors

  • Ivan Dupliak Lviv Polytechnic National University 12 Stepan Bandera str., Lviv, Ukraine, 79013, Ukraine https://orcid.org/0000-0001-6131-2129
  • Bohdan Bakhmatyuk Lviv Polytechnic National University 12 Stepan Bandera str., Lviv, Ukraine, 79013, Ukraine
  • Andrij Kurepa Lviv Polytechnic National University 12 Stepan Bandera str., Lviv, Ukraine, 79013, Ukraine
  • Ivan Grygorchak Lviv Polytechic National University 12 Stepan Bandera str., Lviv, Ukraine, 79013, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2016.65444

Keywords:

Frumkin adsorption, activated carbon materials, specific pseudocapacity, molecular energy storage

Abstract

The electrochemical and thermodynamic features of the iodine electrosorption process on the surface of microporous activated carbon materials (ACM) (ST BET=1600–1900m2×g-1) in 25 % ZnI2 aqueous solution are investigated. The kinetic reversibility of the process, electrode polarization, fractional surface coverage by iodine atoms (θІ) are found. The thermodynamic analysis of the surface adsorption compound of ACM with iodine allows using the known Frumkin adsorption ratios to describe the iodine adsorption process. Comparison of theoretical adsorption isotherms (TAI) and the relationship between the specific pseudocapacity (Cp) and θІp–θІ) with practical galvanostatic discharge curves built from experimental data is made, and the parameter of the interatomic interaction (g) in the adsorption monolayer is determined. Correlation of the data of electrochemical impedance spectroscopy (EIS) with the data of galvanostatic cycles (GC) is found. Good agreement of the EIS experimental data with transmission electrical equivalent circuit for the porous electrode is obtained. The study provides insights into the process mechanism, the EEC of the interface between electrode and electrolyte, and efficiency of the material as a positive electrode in molecular energy storage (MES) systems. Sufficiently high efficiency of GC of electrodes based on ACM1 (ST BET=1600 m2×g-1), and ACM2 (ST BET=1900 m2×g-1) in the MES system is obtained. The specific discharge of ACM1 Cd=1200 C×g-1І=0.99) with the Coulomb efficiency η=95 % almost reaches its maximum theoretical value 1,216 C×g-1І=1). The similarity of the experimental desorption isotherm and СpІ- relationship of ACM1 gives an indication of the process mechanism by the Frumkin model with g=–0,88. The maximum value of ACM1 Cp=F×8.8 m2 obtained according to the EIS is close to 9.4 F×m-2 obtained according to the GC. At the same time, 70 % of the total pseudocapacity of ACM1 has a low time constant τ=RC=82 c.

Author Biographies

Ivan Dupliak, Lviv Polytechnic National University 12 Stepan Bandera str., Lviv, Ukraine, 79013

Postgraduate student

Depatment of Applied Physics and Nanomaterial Science

Bohdan Bakhmatyuk, Lviv Polytechnic National University 12 Stepan Bandera str., Lviv, Ukraine, 79013

Candidate of Chemical Science, Associate Professor

Depatment of Applied Physics and Nanomaterial Science

Andrij Kurepa, Lviv Polytechnic National University 12 Stepan Bandera str., Lviv, Ukraine, 79013

Candidate of Physical and Mathematical Sciences, Associate Professor

Depatment of Applied Physics and Nanomaterial Science

Ivan Grygorchak, Lviv Polytechic National University 12 Stepan Bandera str., Lviv, Ukraine, 79013

Doctor of Technical Science, Professor, Head of Department

Department of Applied Physics and Nanomaterials Science

References

  1. Kinoshita, K. (1988). Carbon: Electrochemical and Physicochemical Properties. John Wiley Sons.
  2. Zhang, Y., Feng, H., Wu, X., Wang, L., Zhang, A., Xia, T., Dong, H., Li, X., Zang, L. (2009). Progress of electrochemical capacitors electrode materials: A review. International J. of hydrogen energy, 34, 4889–4899.
  3. Beguin, F., Frackowiak, E. (2013). Supercapacitors: Materials, Systems and Applications. John Wiley & Sons, 450.
  4. Simon, P., Burke, A. (2008). Nanostructured Carbons: Double–Layer Capacitance and More. The Electrochemical Society Interface, 17.1, 38–43.
  5. Conway, B. E. (2013). Electrochemical supercapacitors. Springer Science & Business Media, 698. doi: 10.1007/978-1-4757-3058-6
  6. Bakhmatyuk, B. P. (2015). High-energy-density electrode on the basis of activated carbon material for hybrid supercapacitors. Electrochimica Acta, 163, 167–173. doi: 10.1016/j.electacta.2015.02.118
  7. Conway, B. E. (1991). Transition from “Supercapacitor” to “Battery” Behavior in Electrochemical Energy Storage. Journal of The Electrochemical Society, 138 (6), 1539–1548. doi: 10.1149/1.2085829
  8. Mianowski, A., Owczarek, M., Marecka, A. (2007). Surface Area of Activated Carbon Determined by the Iodine Adsorption Number. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 29(9), 839–850. doi: 10.1080/00908310500430901
  9. Jow, J.-J., Guo, Z.-S., Chen, H.-R., Wu, M.-S.& Ling, T.-R. (2010). Determination of the iodine adsorption number of carbon black by using a direct cathodic reduction method. Electrochemistry Communications, 12 (11), 1605–1608. doi: 10.1016/j.elecom.2010.09.006
  10. Barpanda, P., Fanchini, G., Amatucci, G. G. (2007). Physical and Electrochemical Properties of Iodine-Modified Activated Carbons. Journal of The Electrochemical Society, 154 (5), A467–A476. doi: 10.1149/1.2714313
  11. Barpanda, P. (2007). Fabrication, structure and electrochemistry of iodated microporous carbons of low mesoporosity. Interface (ECS), 16 (4), 57–58.
  12. Barpanda, P., Fanchini, G., Amatucci, G. G. (2007). The physical and electrochemical characterization of vapor phase iodated activated carbons. Electrochimica Acta, 52 (24), 7136–7147. doi: 10.1016/j.electacta.2007.05.051
  13. Lota, G., Frackowiak, E. (2009). Striking capacitance of carbon/iodide interface. Electrochemistry Communications, 11 (1), 87–90. doi: 10.1016/j.elecom.2008.10.026
  14. Lota, G., Fic, K., Frackowiak, E. (2011). Alkali metal iodide/carbon interface as a source of pseudocapacitance. Electrochemistry Communications, 13 (1), 38–41. doi: 10.1016/j.elecom.2010.11.007
  15. Senthilkumar, S. T., Selvan, R. K., Lee, Y. S., Melo, J. S. (2013). Electric double layer capacitor and its improved specific capacitance using redox additive electrolyte. J. Mater. Chem. A, 1 (4), 1086–1095. doi: 10.1039/c2ta00210h
  16. Senthilkumar, S. T., Selvan, R. K., Ulaganathan, M., Melo, J. S. (2014). Fabrication of Bi2O3||AC asymmetric supercapacitor with redox additive aqueous electrolyte and its improved electrochemical performances. Electrochimica Acta, 115, 518–524. doi: 10.1016/j.electacta.2013.10.199
  17. Bakhmatyuk, B. P., Venhryn, B. Y., Grygorchak, I. I., Micov, M. M., Kulyk, Y. O. (2007). On the hierarchy of the influences of porous and electronic structures of carbonaceous materials on parameters of molecular storage devices. Electrochimica Acta, 52 (24), 6604–6610. doi: 10.1016/j.electacta.2007.04.053
  18. Bakhmatyuk, B. P., Venhryn, B. Y., Grygorchak, I. I., Micov, M. M. (2008). Influence of chemical modification of activated carbon surface on characteristics of supercapacitors. Journal of Power Sources, 180 (2), 890–895. doi: 10.1016/j.jpowsour.2008.02.045
  19. Produced by Norit Activated Carbon. CABOT Inc. Available at: http://www.norit.com/
  20. Pohlmann, S., Lobato, B., Centeno, T. A., Balducci, A. (2013). The influence of pore size and surface area of activated carbons on the performance of ionic liquid based supercapacitors. Physical Chemistry Chemical Physics, 15 (40), 17287–17294. doi: 10.1039/c3cp52909f
  21. Hamman, H. C., Hamnett, A., Vielstich, W. (1998). Electrochemistry. Wiley, 423.
  22. Silbey, R. J., Alberty, R. A. (2001). Physical Chemistry. 3rd edition. Wiley.
  23. Ruben, S. (1985). Handbook of elements.La Salle, 124.
  24. Bard, A. J. (2006). Encyclopedia of electrochemistry. VCH, 1091.
  25. Song, H.-K., Hwang, H.-Y., Lee, K.-H., Dao, L. H. (2000). The effect of pore size distribution on the frequency dispersion of porous electrodes. Electrochimica Acta, 45 (14), 2241–2257. doi: 10.1016/s0013-4686(99)00436-3

Published

2016-04-25

How to Cite

Dupliak, I., Bakhmatyuk, B., Kurepa, A., & Grygorchak, I. (2016). Mechanism of capacitive charge of electrodes on the basis of activated carbon materials in ZnI2 solution. Eastern-European Journal of Enterprise Technologies, 2(5(80), 22–29. https://doi.org/10.15587/1729-4061.2016.65444