Study of heat deformation influence in surface strain hardening of steel by thermofriction processing

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.65458

Keywords:

thermofriction processing, friction, hardening disc, “white layer”, strain hardening, ε-carbide, nanostructure

Abstract

The paper deals with studying the heat deformation influence in the surface strain hardening of steels by thermofriction processing. The main objective of the work was to determine the relationship between the surface heating temperature during TFP, cooling rate, deformation, structure formation and properties of steels, hardened by TFP. The study solved the thermal conductivity problem, which allowed determining the surface heating temperature of samples of steels 15Kh11MF, 65G, U8A, Kh12M in TFP. The photographs of microstructures, which show changes over the cross section of the samples are presented. The presence of surface-hardened “white layer” with increased hardness is obvious, as evidenced by the prints of micro-hardness measurements. The data showed that the deformation mechanism of hardening in a short-term heating of the hardenable surface is predominant in TFP. It is also noted that the “deformed grained martensite” structure is formed, the hardness of which is more than twice the hardness of the martensite structure obtained in hardening of the proposed steels and can be considered as a type of nanostructure.

Author Biography

Оleg Volkov, National Technical University «Kharkiv Polytechnic Institute» 21 Bogoliya str., Kharkiv, Ukraine, 61002

Senior lecturer

Department of мaterials science

References

  1. Sizyy, Yu. A., Pogrebnoy, N. A., Volkov, O. A. (2002). Uprocheniye poverkhnosti iz stali 15Kh11MF pri pomoshchi termofriktsionnoy obrabotki. Vіsnik KhDTU sіlskogo gospodarstva, 10.
  2. Pokіntelitsya, M. І. (2012). Robochі protsesi termofriktsіynoi obrobki detaley diskovim іnstrumentom ta ikh vpliv na pokazniki yakostі obroblenoi poverkhnі. Suchasnі napryami ta perspektivi rozvitku tekhnologіy obrobki ta obladnannya u mashinobuduvannі «Mekhanoobrobka. Sevastopol – 2012», 61.
  3. Novikov, F. V., Yakimov, A. V. (Eds.) (2003). Fiziko-matematicheskaya teoriya protsessov obrabotki materialov i tekhnologii mashinostroyeniya. in 10 volumes. Vol. 2. Odessa: «Teplofizika rezaniya materialov», 625.
  4. Sizyy, Yu. A. (1996). Teoreticheskiye osnovy upravleniya strukturoy i parametrami tekhnologicheskoy sistemy friktsionnoy razrezki. Kharkovskiy gos. politekhnicheskiy un-t., 352.
  5. Gurey, I. V. (2001). Povysheniye rabotosposobnosti detaley mashin impulsnym friktsionnym uprochneniyem. Inzheneriya poverkhnosti i renovatsiya izdeliy. Materialy mezhdunarodnoy nauchno-tekhnicheskoy konferentsii, 58–60.
  6. Lakshminarayanan, A. K., Balasubramanian, V. (2011). Understanding the parameters controlling friction stir welding of AISI 409M ferritic stainless steel. Metals and Materials International, 17 (6), 969–981. doi: 10.1007/s12540-011-6016-6
  7. Galvão, I., Leal, R. M., Rodrigues, D. M., Loureiro, A. (2013). Influence of tool shoulder geometry on properties of friction stir welds in thin copper sheets. Journal of Materials Processing Technology, 213 (2), 129–135. doi: 10.1016/j.jmatprotec.2012.09.016
  8. Rajamanickam, N., Balusamy, V., Madhusudhanna Reddy, G., Natarajan, K. (2009). Effect of process parameters on thermal history and mechanical properties of friction stir welds. Materials & Design, 30 (7), 2726–2731. doi: 10.1016/j.matdes.2008.09.035
  9. Momeni, A., Arabi, H., Rezaei, A., Badri, H., Abbasi, S. M. (2011). Hot deformation behavior of austenite in HSLA-100 microalloyed steel. Materials Science and Engineering: A, 528 (4-5), 2158–2163. doi: 10.1016/j.msea.2010.11.062
  10. Sidhom, H., Ghanem, F., Amadou, T., Gonzalez, G., Braham, C. (2012). Effect of electro discharge machining (EDM) on the AISI316L SS white layer microstructure and corrosion resistance. Int J Adv Manuf Technol, 65 (1-4), 141–153. doi: 10.1007/s00170-012-4156-6
  11. Sipos, K., Lopez, M., Trucco, M. (2008). Surface martensite white layer produced by adhesive sliding wear friction in AISI 1065 steel. Rev Latinoam Metal Mater., 28 (1), 46–50.
  12. Volkov, O. O., Knyazev, S. A., Pogrіbniy M. A. (2007). Optimіzatsіya rezhimіv zmіtsnennya TFO staley z rіznim khіmі-chnim skladom. Tez. dop. І Unіversitetskoi nauk.-praktich. studentskoi konferentsіi magіstrantіv Natsіonalnogo tekhnіchnogo unіversitetu «Kharkіvskiy polіtekhnіchniy іnstitut».
  13. Reznikov, A. N. (1969). Teplofizika rezaniya. Moscow, 288.
  14. Sipaylov, V. A. (1978.) Teplovyye protsessy pri shlifovanii i upravleniye kachestvom poverkhnosti. Moscow, 167.
  15. Sizyy, Yu. A., Pogrebnoy N. A., Volkov O. A. (2002). Temperaturnoye pole na kromke poverkhnosti uporochnyayemoy treniyem. Vіsnik KhDTU sіlskogo gospodarstva, 10.
  16. Volkov, O. O., Pogrіbniy, M. A., Siziy, Yu. A., Kulik, G. G. (2010). Doslіdzhennya rolі teplovikh yavishch u formuvannі struktur ta vlastivostey staley rіznikh marok pri zmіtsnennі metodom TFO. Vіsnik natsіonalnogo tekhnіchnogo unіversitetu «Kharkіvskiy polіtekhnіchniy іnstitut», 40, 17–24.
  17. Arzamasov, B. N., Makarova, V. I., Mukhin, G. G. et. al. (2008). Materialovedeniye : uchebnik dlya vuzov. Moscow, 648.
  18. Dyachenko, S. S., Doshchechkіna, І. V., Movlyan, A. O., Pleshakov, E. І. (2007). Materіaloznavstvo. Kharkiv, 440.
  19. Pogrіbniy, M. A., Volkov, O. O., Sіziy, Yu. A., Gutsalenko, Yu. G. (2007). Elektronno-mіkroskopіchne doslіdzhennya «bіlogo sharu» pіslya termofriktsіynoi obrobki. Rezaniye i instrument v tekhnologicheskikh sistemakh, 72, 126–131.
  20. Sizyy, Yu. A., Pogrebnoy, N. A., Gutsalenko Yu. G., Volkov O. O., Savitskiy, B. A., Kulik, G. G. (2006). Issledovaniye vliyaniya mnogoprokhodnoy termofriktsionnoy obrabotki na formirovaniye belogo sloya v stali 65G. Rezaniye i instrument v tekhnologicheskikh sistemakh, 71.
  21. Gorelik, S. S., Rastorguyev, L. N., Skakov, Yu. A. (1970). Rentgenograficheskiy i elektronnoopticheskiy analiz. Moscow, 366.
  22. Utevskiy, L. M. (1973). Difraktsionnaya elektronnaya mikroskopiya v metallovedenii. Moscow, 584.
  23. Siziy, Yu. A., Pogrіbniy, M. A., Gutsalenko, Yu. G.. Volkov, O. O., Kulik, G. G. (2006). Doslіdzhennya fazovogo skladu staley 65G ta U8A pіslya zmіtsnennya shlyakhom termofriktsіynoi obrobki. Visokі tekhnologіi v mashinobuduvannі, 2 (13).
  24. Volkov, O. A. (2005). Issledovaniye vliyaniya TFO na napryazhennoye sostoyaniye v stali 15Kh11MF. Vіsnik NTU «KhPІ», 12, 84–88.
  25. Volkov, O. O., Pogrіbniy, M. A., Dmitruk, V. L. (2014). Doslіdzhennya vplivu TFO na teplostіykіst stalі 65G. Іnformatsіynі tekhnologіi: nauka. tekhnіka. tekhnologіya. osvіta. zdorov’ya: Tezi dopovіdey KhXІI mіzhnarodnoi naukovo-praktichnoi konferentsіi. Part ІІ, 9.

Published

2016-04-25

How to Cite

Volkov О. (2016). Study of heat deformation influence in surface strain hardening of steel by thermofriction processing. Eastern-European Journal of Enterprise Technologies, 2(5(80), 38–44. https://doi.org/10.15587/1729-4061.2016.65458