Improving the aluminum drill pipes stability by optimizing the shape of protector thickening

Authors

  • Olesya Vlasiy Vasyl Stafanyk Precarpathian National University Shevchenko str., 57, Ivano-Frankivs'k, Ukraine, 76018, Ukraine https://orcid.org/0000-0001-7310-9611
  • Viktor Mazurenko Vasyl Stafanyk Precarpathian National University Shevchenko str., 57, Ivano-Frankivs'k, Ukraine, 76018, Ukraine https://orcid.org/0000-0002-8052-0641
  • Liubomyr Ropyak Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019, Ukraine https://orcid.org/0000-0001-7500-336X
  • Alexander Rogal Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2017.65718

Keywords:

drill pipe, protector thickening, torque, axial force, stability, deformation

Abstract

The methods of improving the durability of elements of the drill string were analyzed. A mathematical model of elastic deformation is developed and the loss of stability of aluminium drill pipe with inner and outer near-end protector thickenings in the middle section is investigated under the action of torque and axial compressive force. Based on the results of numerical analysis, we determined the magnitudes of critical loads: the torque and axial force, at which the loss of stability of pipe occurs depending on the different shapes of protector thickening. It was established that the shape of protector thickening does not exert significant influence on the magnitude of critical axial force, but to a larger extent affects the magnitude of critical torque at which the loss of stability of aluminium drill pipe occurs.

We proposed to improve the stability of aluminum drill pipe by optimizing the shape of protector thickening and received exponential dependence, which describes such a streamlined shape. Protector thickening of the optimal shape provides, compared to other characteristic shapes, better performance characteristics: higher stability of pipe and lower hydraulic resistance to the motion of washing fluid. We developed a new design of aluminum drill pipe with a protector thickening of streamlined shape that retains stability up to the critical values of axial force 36209 N and torque 152270 Nm.

Author Biographies

Olesya Vlasiy, Vasyl Stafanyk Precarpathian National University Shevchenko str., 57, Ivano-Frankivs'k, Ukraine, 76018

PhD, Associate Professor

Department of Informatics

Viktor Mazurenko, Vasyl Stafanyk Precarpathian National University Shevchenko str., 57, Ivano-Frankivs'k, Ukraine, 76018

PhD, Associate Professor

Department of Differential Equations and Applied Mathematics

Liubomyr Ropyak, Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019

PhD, Associate Professor, Senior Researcher

Department of Computer Engineering Manufacturing

Alexander Rogal, Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019

Postgraduate student

Department of Computer Engineering Manufacturing

References

  1. Ghasemloonia, A., Geoff Rideout, D., Butt, S. D. (2015). A review of drillstring vibration modeling and suppression methods. Journal of Petroleum Science and Engineering, 131, 150–164. doi: 10.1016/j.petrol.2015.04.030
  2. Gulyayev, V. I., Borshch, O. I. (2011). Free vibrations of drill strings in hyper deep vertical bore-wells. Journal of Petroleum Science and Engineering, 78 (3-4), 759–764. doi: 10.1016/j.petrol.2011.09.001
  3. Steliga, I., Grydzhuk, J., Dzhus, A. (2016). An experimental and theoretical method of calculating the damping ratio of the sucker rod column oscillation. Eastern-European Journal of Enterprise Technologies, 2 (7 (80)), 20–25. doi: 10.15587/1729-4061.2016.66193
  4. Nabil, Musa, Gulyayev, Valery, Shlyun, Nataliya, Aldabas, Hasan (2016) Critical buckling of drill strings in cylindrical cavities of inclined bore-holes. Journal of Mechanics Engineering and Automation, 6, 25–38. doi: 10.17265/2159-5275/2016.01.004
  5. Major, I. E., Big-Alabo, A., Odi-Owei, S. (2015). Effect Of Drill String Rotation On The Dynamic Response Of Drilling Risers. International Journal of Applied Mechanics and Engineering, 20 (3), 503–516. doi: 10.1515/ijame-2015-0034
  6. Sun, Y., Yu, Y., Liu, B. (2015). A simple and accurate numeric solution procedure for nonlinear buckling model of drill string with frictional effect. Journal of Petroleum Science and Engineering, 128, 44–52. doi: 10.1016/j.petrol.2015.02.026
  7. Ritto, T. G., Soize, C., Sampaio, R. (2009). Non-linear dynamics of a drill-string with uncertain model of the bit–rock interaction. International Journal of Non-Linear Mechanics, 44 (8), 865–876. doi: 10.1016/j.ijnonlinmec.2009.06.003
  8. Masoomi, R., Moghadasi, J. (2014). Mathematical modeling and prediction of drill string stability region. Journal of Petroleum Exploration and Production Technology, 4 (4), 351–358. doi: 10.1007/s13202-013-0097-3
  9. Shatskii, I. P., Perepichka, V. V. (2013). Shock-wave propagation in an elastic rod with a viscoplastic external resistance. Journal of Applied Mechanics and Technical Physics, 54 (6), 1016–1020. doi: 10.1134/s0021894413060163
  10. Levchuk, K. G., Moisyshyn, V. M., Tsidylo, I. V. (2016). Influence of Mechanical Properties of a Material on Dynamics of the Stuck Drilling Pipes. METALLOFIZIKA I NOVEISHIE TEKHNOLOGII, 38 (12), 1655–1668. doi: 10.15407/mfint.38.12.1655
  11. Kryl’, Y. A., Prysyazhnyuk, P. M. (2013). Structure formation and properties of NbC-Hadfield steel cermets. Journal of Superhard Materials, 35 (5), 292–297. doi: 10.3103/s1063457613050043
  12. Ropyak, L. Ya., Rogal, O. V. (2013). The Patent of Ukrainta, Sposib zmitsnennya burylnykh trub iz alyuminiyevykh splaviv. Ivano-Frankivsk National Technical University of Oil and Gas. а201114404; declared: 05.12.11; published: 25.10.13, Bul. 20, 4.
  13. Student, М. М., Dovhunyk, V. М., Klapkiv, М. D., Posuvailo, V. М., Shmyrko, V. V., Kytsya, А. Р. (2012). Tribological properties of combined metal-оxide–сeramic layers on light alloys. Materials Science, 48 (2), 180–190. doi: 10.1007/s11003-012-9489-7
  14. Shatskyi, I. P., Ropyak, L. Ya., Makoviichuk, M. V. (2016) Strength optimization of a two-layer coating for the particular local loading conditions. Strength of Materials, 48 (5), 726–730. doi: 10.1007/s11223-016-9817-5
  15. Velichkovich, A. S., Dalyak, T. M. (2015) Assessment of stressed state and performance characteristics of jacketed spring with a cut for drill shock absorber. Chemical and Petroleum Engineering, 51 (3), 188–193.
  16. Shats’kyi, I. P., Lyskanych, O. M., Kornuta, V. A. (2016). Combined Deformation Conditions for Fatigue Damage Indicator and Well-Drilling Tool Joint. Strength of Materials, 48 (3), 469–472. doi: 10.1007/s11223-016-9786-8
  17. Collatz, L. (1963) Eigenwertaufgaben mit technishen anwendungen. Akademische Verlagsgesellschaft Geest & Portig K.-G, 490.
  18. Tatsii, R. M., Stasiuk, M. F., Mazurenko, V. V., Vlasii, O. O. (2011). Uzahalneni kvazidyferentsialni rivniannia. Drohobych: Kolo, 301.
  19. Tatsii, R. M., Ushak, T. I. (2009). Rozviazannia zadach pro vtratu stiikosti stryzhniv z dyskretno-neperervnym rozpodilom parametriv metodom dyskretyzatsii. Mashynoznavstvo, 5 (143), 41–47.

Downloads

Published

2017-02-28

How to Cite

Vlasiy, O., Mazurenko, V., Ropyak, L., & Rogal, A. (2017). Improving the aluminum drill pipes stability by optimizing the shape of protector thickening. Eastern-European Journal of Enterprise Technologies, 1(7 (85), 25–31. https://doi.org/10.15587/1729-4061.2017.65718

Issue

Section

Applied mechanics